Isaac Scientific Publishing

Theoretical Physics

Nonthermal Distribution of Electro-negative Light-ions in Heavy-ion-acoustic Solitary and Shock Structures

Download PDF (849.2 KB) PP. 124 - 131 Pub. Date: September 1, 2019

DOI: 10.22606/tp.2019.43002

Author(s)

  • M. M. Haider
    Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
  • I. Sultana
    Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
  • S. Khatun
    Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
  • J. Nasrin
    Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
  • N. Tasnim
    Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
  • O. Rahman
    Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
  • S. Akter*
    Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

Abstract

An attempt has been taken to study the nonlinear propagation of electro-positive heavy ion-acoustic (EPHIA) solitary and shock waves in multi-component plasmas containing mobile electro-positive heavy ions (EPHIs), nonthermal distributed electro-negative light ions (ENLIs) and Maxwellian electrons. The effects of temperature, mobile EPHIs, ENLIs and its nonthermality on solitary and shock waves are investigated in present work. To do so, we have derived the standard Korteweg-de Vries (K-dV) and Burger equations and their solutions. We have studied the effects of the parametric regimes, which affect the solitary and shock waves, numerically as well as graphically.

Keywords

Electro-positive heavy ion, solitary and shock waves, nonthermal distribution.

References

[1] I. L. Cooney, M. T. Gavin, I. Tao, and K. E. Lonngren, “A two-dimensional soliton in a positive ion-negative ion plasma" IEEE Trans. Plasma Sci. 19, 1259 (1991).

[2] Q. Z. Luo, N. D’Angelo, and R. L. Merlino,“Shock formation in a negative ion plasma" Phys. Plasmas 5, 2868 (1998).

[3] S. H. Kim and R. L. Merlino, “Electron attachment to C7F14 and SF6 in a thermally ionized potassium plasma" Phys. Rev. E 76, 035401 (2007).

[4] M. K. Mishra, R. S. Chhabra, and S. R. Sharma, “Obliquely propagating ion-acoustic solitons in a multicomponent magnetized plasma with negative ions" J. Plasma Phys. 52, 409 (1994).

[5] F. Sayed, M. M. Haider, A. A. Mamun, P. K. Shukla, B. Eliasson, and N. Adhikary, “Dust ion-acoustic solitary waves in a dusty plasma with positive and negative ions", Phys. Plasmas. 15, 063701 (2008).

[6] M. M. Haider, T. Ferdous, S.S. Duha, and A.A Mamun, “Dust-ion-acoustic Solitary Waves in Multicomponent Magnetized Plasmas", Open J. Modern Phys. 1, 13 (2014).

[7] M. M. Haider, T. Ferdous, and S. S. Duha, Cent. Eur. J. Phys. 1(2), 13-24, (2014).

[8] M. M. Haider, T. Ferdous, and S. S. Duha, “The effects of vortex like distributed electron in magnetized multi-ion dusty plasmas", J. Theor. Appl. Phys. 9, 159 (2015).

[9] M. M. Haider, “Ion-AcousticWaves Instability in a Three Components Magneto- Plasma with Nonthermal Electrons", Contrib. Plasma Phys. 53, 234 (2013).

[10] M. M. Haider, “Dust-ion-acoustic solitary structure with opposite polarity ions and non-thermal electrons", Eur. Phys. J. D. 70, 28 (2016).

[11] Y. Nakamura, and I. Tsukabayashi, “Observation of Modified Korteweg-de Vries Solitons in a Multicomponent Plasma with Negative Ions" Phys. Rev. Lett. 52, 2356 (1984).

[12] C. O. Hines, “Heavy-ion effects in audio-frequency radio propagation", J. Atmospheric Terrest. Phys. 11, 36 (1957).

[13] M.R. Hossen, L. Nahar, S. Sultana, and A.A. Mamun, “Nonplanar ion-acoustic shock waves in degenerate plasmas with positively charged heavy ions", High Energ. Density Phys. 13, 13 (2014).

[14] S. A. Ema, M. Ferdousi, S. Sultana, and A. A. Mamun, “Dust-ion-acoustic shock waves in nonextensive dusty multi-ion plasmas", Eur. Phys. J. Plus 130, 46 (2015).

[15] M. G. Shah, M. M. Rahman, M. R. Hossen, and A. A. Mamun, “Roles of Superthermal Electrons and Adiabatic Heavy Ions on Heavy-Ion-Acoustic Solitary and Shock Waves in a Multi-Component Plasma", Commun. Theor. Phys. 64, 2, 208-214 (2015).

[16] O. Rahman and M. M. Haider, “Modified Korteweg-de Vries (mK-dV) Equation Describing Dust-ion-acoustic Solitary Waves in an Unmagnetized Dusty Plasma with Trapped Negative Ions", Advances in Astrophysics 1, 3 (2016).

[17] H. Washimi and T. Taniuti, “Propagation of Ion-Acoustic Solitary Waves of Small Amplitude", Phys. Rev. Lett. 17, 996 (1966).

[18] D. J. Korteweg and G. de Vries, “On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves", Philosophical Magazine 39, 422 (1895).

[19] J. M. Burgers, “A mathematical model illustrating the theory of turbulence", In Advances in applied mechanics 1, 171, (1948).

[20] R. A. Cairns, A. A. Mamun, R. Bingham, and R. Bostr?m, R. O. Dendy, C. M. C. Nairn, and P. K. Shukla, “Electrostatic solitary structures in non-thermal plasmas", Geophys. Res. Lett. 22, 2709 (1995).

[21] E. Witt and W. Lotko, “Ion-acoustic solitary waves in a magnetized plasma with arbitrary electron equation of state", Phys. Fluids, 26, 2176 (1983).

[22] M. M. Haider, “Soliton and Shock Profiles in Electron-positronion Degenerate Plasmas for Both Nonrelativistic and Ultra-Relativistic Limits", Z. Naturforsch A 71 (12), 1131 (2016).

[23] M. M. Haider and A. Nahar, “Dust-Ion-Acoustic Solitary and Shock Structures in Multi-Ion Plasmas with Super-Thermal Electrons", Z. Naturforsch A 72 (7), 627 (2017).