联系我们
Isaac Scientific Publishing
Journal of Current Microbiology
JCMb > Volume 1, Number 1, October 2018

Concomitant Extracellular Polymeric Substance and Lipid Production by Cloacibacterium Normanense via Fermentation of Sterilized Activated Sludge Fortified with Crude Glycerol

Download PDF  (562.4 KB)PP. 1-14,  Pub. Date:October 23, 2018


Author(s)
Klai Nouha, Ram Saurabh Kumar, Tyagi R. D.
Affiliation(s)
Université du Québec, Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, 490 de la Couronne, Québec, G1K 9A9, Canada

Université du Québec, Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, 490 de la Couronne, Québec, G1K 9A9, Canada

Université du Québec, Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, 490 de la Couronne, Québec, G1K 9A9, Canada
Abstract
Exopolymeric substances (EPS) are produced by numerous microorganisms as their defense mechanism, in response to hostile conditions. Recently EPS have been reported to be used as a potential bioflocculant for settling and dewatering of solid waste generated in wastewater treatment plants. In our previous study (Klai et al., 2015) we reported the production of EPS by newly isolated strain Cloacibacterium normanense NK6. In this study, we report the simultaneous production of EPS and lipid by C. normanense. The EPS production and lipid accumulation by the bacterium was enhanced by varying the carbon-nitrogen (C/N) ratio in sterilized activated sludge media supplemented with crude glycerol as additional carbon source. Sterilized activated sludge was inoculated with 5% (v/v) of C. normanense. At low C/N ratio, lipid content was found to be low, but EPS concentration was significantly high while at high C/N ratio, an increase in lipid % (g/g cell dry weight) and a decrease in EPS concentration was observed. The best results were obtained using C/N 25. C. normanense accumulated a lipid content of 27.6% (w/w) and 22 g/L of EPS in 72 h. Therefore, Cloacibacterium sp. appears to be a suitable candidate for fermentation processes to produce EPS and lipid from renewable resources.
Keywords
Wastewater solid sludge, crude glycerol, Cloacibacterium normanense, EPS, microbial lipid.
References
  • [1] Angerbauer, C.M., Siebenhofer, M., Mittelbach, M., Guebitz, G.M.2008. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technol.99, 3051–3056.
  • [2] Fan, J., Yan, C., Zhang, X., Xu, C. 2013. Dual role for phospholipid:diacylglycerol acyltransferase: enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in Arabidopsis leaves. Plant Cell. 25, 3506–3518.
  • [3] Farhadi, G.B.N., Khosravi –Darani, K., Nejad, B.N., 2012. Enhancement of Xanthan production on date extract using response surface methodology. Asian J Chem. 24, 3887 -3890.
  • [4] Folch, J., Lees, M., Stanley, G.H.S. 1957. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry 226: 497–509.
  • [5] Gao Q, Cui Z, Zhang J, Bao J. 2014. Lipid fermentation of corncob residues hydrolysate by oleaginous yeast Trichosporon cutaneum. Bioresource Technol.152, 552–556.
  • [6] Halim, R., Gladman, B., Danquah, M.K., Webley, P.A. 2011. Oil extraction from microalgae for biodiesel production. Bioresour Technol.;102:178–185.
  • [7] Hu,H., Gao,K. 2003. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnological Letters. 25, 421–425.
  • [8] Hu, S., Luo, X., Wan, C., and Li, Y. 2012. Characterization of crude glycerol from biodiesel plants. J Agric Food Chem 60, 5915-5921.
  • [9] Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G. 2010. Biodiesel production by microalgal biotechnology. Applied energy, 87(1), 38-46.
  • [10] Klai, N.; Hoang, N. V.; Yan, S.; Tyagi, R. D. et Surampalli, R. Y. 2015. Characterization of extracellular polymeric substances (eps) produced by Cloacibacterium normanense isolated from wastewater sludge for sludge settling and dewatering. Civil Environ. Eng., 5: 6.
  • [11] Kumar A. S., Mody K., Jha B. 2007. Bacterial exopolysaccharides-a perception. J. Basic Microbiol.47, 103–117.
  • [12] Li& Yang, 2007. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge, Water Research 41: 1022-1030.
  • [13] Liu, C., Lu, J., Lu, L., Liu, Y., Wang, F., Xiao, M. 2010. Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8- 37-0-1. Bioresource Technology 101,5528-55-33.
  • [14] Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M. 2009. Review Biodiesel production from oleaginous microorganisms. Renewable Energy. 34, 1–5.
  • [15] More, T.T., Yan, S., Hoang, N.V., Tyagi, R.D., Surampalli, R.Y., 2012. Bacterial polymer production using pre-treated sludge as raw material and its flocculation and dewatering potential. Bioresource Technol. 121, 425-431.
  • [16] Mulder, E., de Gier, J. & van Deenen, L. L. M. 1962. Biochim. biophys. Acta, 59, 502.
  • [17] Nouha K., Hoang, N.V., Tyagi R.D. 2016. Fourier Transform Infrared Spectroscopy and Liquid Chromatography–Mass Spectrometry Study of Extracellular Polymer Substances Produced on Secondary Sludge Fortified with Crude Glycerol. J Material Sci Eng 5: 240.
  • [18] Papanikolaou, S., Sarantou, S., Komaitis, M., Aggelis, G. 2004. Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. Journal of Applied Microbiology. 97, 867–875.
  • [19] Patil, S., 2010. Lipid production from glucose and starch using Lipomyces starkeyi, PhD thesis. Chemical engineering Department ,UL Lafayette, Lafayette, LA.USA.
  • [20] Rosalam, S., England, R. 2006. Review of xanthan gum production from unmodified starches by Xanthomonas camprestris sp. Enzyme Microb Tech. 39, 197 –207.
  • [21] Sheng, G. P., Yu H. Q. & Yue Z. 2006. Factors influencing the production of extracellular polymeric substances by Rhodopseudomonas acidophila. Int. Biodeter. Biodegr. 58, 89–93.
  • [22] Torres, C. A. V., Antunes, S., Ricardo, A. R., Grandfils, C., Alves, V. D., Freitas, F., et al. 2012. Study of the interactive effect of temperature and pH on exopolysaccharide production by Enterobacter A47 using multivariate statistical analysis. Bioresour. Technol. 119, 148–156.
  • [23] Vicente, G., Bautista, L.F., Rodriguez, R., Gutierrez, F.J., Sadaba, I., Ruiz-Vazquez, R.M., Torres-Martinez, S., Garre, V. 2009. Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48:22–27.
  • [24] Vicente-Garcia V, Rios-Leal E, Calderon-Dom?nguez G, Canizares-Villanueva RO & Olvera-Ramirez R. 2004. Detection, isolation, and characterization of exopolysaccharide produced by a strain of Phormidium 94a isolated from an arid zone of Mexico. Biotechnol Bioeng. 85, 306–310.
  • [25] Wingender, J., Neu, T.R., Flemming, H.C., 1999. Microbial Extracellular Polymeric Substances: Characterization, Structure and Function. Springer-Verlag, Berlin Heidelberg, New York.
  • [26] Xu, J., Zhao, X., Wang, W., Du, W., Liu, D. 2012. Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochemical engineering journal, 65, 30-36.
  • [27] Zabeti, M., Wan Daud., W. M., and Aroua, M. K. 2010. Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology. Appl. Catal. Gen., 366(1), 154.
  • [28] Zhang, X., Yan, S., Tyagi, R. D., Surampalli, R. Y. et Valéro, J. R. 2014. Lipid production from Trichosporon oleaginosus cultivated with pre-treated secondary wastewater sludge. Fuel, 134 (Octobre) : 274-282.
Copyright © 2020 Isaac Scientific Publishing Co. All rights reserved.