Isaac Scientific Publishing

Advances in Analysis

On Birkhoff Interpolations with Fractional-order Derivatives

Download PDF (470.8 KB) PP. 35 - 40 Pub. Date: January 15, 2017

DOI: 10.22606/aan.2017.11006

Author(s)

  • Tinggang Zhao*
    School of Mathematics, Lanzhou City University, Lanzhou, Gansu, China

Abstract

In this paper, we consider some interpolations of Birkhoff-type with fractional-order derivative. The Birkhoff interpolations is related with collocation method for the corresponding initial or boundary value problems of differential equations of fractional-order. The solvability of the interpolation problems is studied. For Gauss-type interpolating points, error of interpolation approximation is deduced.

Keywords

Birkhoff interpolation, collocation method, fractional calculus.

References

[1] G. D. Birkhoff , “General mean value and remainder theorems with applications to mechanical differentiation and quadrature,” Transactions on American Mathematical Society, vol. 7, no. 1, pp. 107–136, 1906.

[2] G. G. Lorentz and K. L. Zeller, “Birkhoff interpolation,” SIAM Journal on Numerical Analysis, vol. 8, no. 1, pp. 43–48, 1971.

[3] G. G. Lorentz, K. Jetter and S. D. Riemenschneider, Birkhoff Interpolation. Addison-Wesley Publ. Comp., 1983.

[4] G. Pólya, “Bemerkung zur interpolation und zur N?herungstheorie der balkenbiegung,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 11, no. 3, pp. 445–449, 1931.

[5] I. J. Schoenberg, “On Hermite-Birkhoff interpolation,” Journal of Mathematical analysis and applications, vol. 16, no. 3, pp. 538–543, 1966.

[6] A. Sharma, “Some poised and unpoised problems of interpolation,” SIAM Review, vol. 14, no. 1, pp. 129–151, 1972.

[7] Y. G. Shi, Theory of Birkhoff Interpolation. Nova Science Publ., 2003.

[8] D. R. Ferguson, “The question of uniqueness for G. D. Birkhoff interpolation problems,” Journal of approximation theory, vol. 2, no. 1, pp.1–28, 1969.

[9] F. Palacios and P. Rubió, “Generalised Pólya condition for Birkhoff interpolation with lacunary polynomial,” Applied Mathematics E-Notes, vol. 3, no. 1, pp. 124–129, 2003.

[10] G. Mühlbach, “An algorithm aproach to Hermite-Birkhoff-interpolation,” Numerische Mathematik, vol. 37, no. 3, pp. 339–347, 1981.

[11] L. Szili, “A survey on (0,2) interpolation,” Annales Universitatis Scientiarum Budapestinensis de Rolando E?tv?s Nominatae Sectio Computatorica, vol. 16, no. 1, pp. 377–390, 1996.

[12] L. L. Wang, D. D. Samson and X. D. Zhao, “A well-conditioned collocation method using a pseudospectral integration matrix,” SIAM Journal on Scientific Computing, vol. 36, no. 3, pp. A907–A929, 2014.

[13] Y. J. Jiao, L. L. Wang and C. Huang, “Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis,” Journal of Computational Physics, vol. 305, no. 1, pp. 1–28, 2016.

[14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, 2006.

[15] J. Shen, T. Tang and L. L. Wang, Spectral methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics 41, Springer-Verlag, 2011.