Advances in Analysis
On Birkhoff Interpolations with Fractional-order Derivatives
Download PDF (470.8 KB) PP. 35 - 40 Pub. Date: January 15, 2017
Author(s)
- Tinggang Zhao*
School of Mathematics, Lanzhou City University, Lanzhou, Gansu, China
Abstract
Keywords
References
[1] G. D. Birkhoff , “General mean value and remainder theorems with applications to mechanical differentiation and quadrature,” Transactions on American Mathematical Society, vol. 7, no. 1, pp. 107–136, 1906.
[2] G. G. Lorentz and K. L. Zeller, “Birkhoff interpolation,” SIAM Journal on Numerical Analysis, vol. 8, no. 1, pp. 43–48, 1971.
[3] G. G. Lorentz, K. Jetter and S. D. Riemenschneider, Birkhoff Interpolation. Addison-Wesley Publ. Comp., 1983.
[4] G. Pólya, “Bemerkung zur interpolation und zur N?herungstheorie der balkenbiegung,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 11, no. 3, pp. 445–449, 1931.
[5] I. J. Schoenberg, “On Hermite-Birkhoff interpolation,” Journal of Mathematical analysis and applications, vol. 16, no. 3, pp. 538–543, 1966.
[6] A. Sharma, “Some poised and unpoised problems of interpolation,” SIAM Review, vol. 14, no. 1, pp. 129–151, 1972.
[7] Y. G. Shi, Theory of Birkhoff Interpolation. Nova Science Publ., 2003.
[8] D. R. Ferguson, “The question of uniqueness for G. D. Birkhoff interpolation problems,” Journal of approximation theory, vol. 2, no. 1, pp.1–28, 1969.
[9] F. Palacios and P. Rubió, “Generalised Pólya condition for Birkhoff interpolation with lacunary polynomial,” Applied Mathematics E-Notes, vol. 3, no. 1, pp. 124–129, 2003.
[10] G. Mühlbach, “An algorithm aproach to Hermite-Birkhoff-interpolation,” Numerische Mathematik, vol. 37, no. 3, pp. 339–347, 1981.
[11] L. Szili, “A survey on (0,2) interpolation,” Annales Universitatis Scientiarum Budapestinensis de Rolando E?tv?s Nominatae Sectio Computatorica, vol. 16, no. 1, pp. 377–390, 1996.
[12] L. L. Wang, D. D. Samson and X. D. Zhao, “A well-conditioned collocation method using a pseudospectral integration matrix,” SIAM Journal on Scientific Computing, vol. 36, no. 3, pp. A907–A929, 2014.
[13] Y. J. Jiao, L. L. Wang and C. Huang, “Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis,” Journal of Computational Physics, vol. 305, no. 1, pp. 1–28, 2016.
[14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, 2006.
[15] J. Shen, T. Tang and L. L. Wang, Spectral methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics 41, Springer-Verlag, 2011.