Journal of Advances in Nanomaterials
Nitrogen Doped Carbon Nanofibers Derived from Water-Soluble Precursors
Download PDF (781.9 KB) PP. 197 - 207 Pub. Date: December 7, 2017
Author(s)
- Lee D. Cremar*
Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA - Ben Jones
Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA - Nicole Martinez
Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA - Gustavo Mejia
Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA - Hilario Cortez
Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA - Edgar Muñoz
Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA - Rocío Nava
Instituto de Energías Renovables, Universidad Nacional Autónoma de México. Privada Xochicalco s/n, 62580 Temixco, Morelos, México - Karen Lozano*
Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
Abstract
Keywords
References
[1] W. H. Choi, M. J. Choi, and J. H. Bang. "Nitrogen-Doped Carbon Nanocoil Array Integrated on Carbon Nanofiber Paper for Supercapacitor Electrodes," ACS Applied Materials & Interfaces, vol. 7, no. 34, pp. 19370- 19381, 2015. http://dx.doi.org/10.1021/acsami.5b05527
[2] Y. Du, K. Cai, S. Chen, H. Wang, S. Z. Shen, R. Donelson, and T. Lin. "Thermoelectric Fabrics: Toward Power Generating Clothing," Scientific Reports, vol. 5, no. 6411, pp. 1-6, 2015. http://dx.doi.org/10.1038/srep06411
[3] C. A. Hewitt, D. S. Montgomery, R. L. Barbalace, R. D. Carlson, and D. L. Carroll. "Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites," Journal of Applied Physics, vol. 115, no. 18, pp. 1845021-1845025, 2014. http://dx.doi.org/10.1063/1.4874375
[4] O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin. "Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)," Nature Materials, vol. 10, no. 6, pp. 429-433, 2011. http://dx.doi.org/10.1038/nmat3012
[5] S. Han and D. D. L. Chung. "Through-thickness thermoelectric power of a carbon fiber/epoxy composite and decoupled contributions from a lamina and an interlaminar interface," Carbon, vol. 52, pp. 30-39, 2013. http://dx.doi.org/10.1016/j.carbon.2012.08.071
[6] H. J. Goldsmid, "Recent Trends in Thermoelectric Materials Research I - Chapter 1 Introduction," in Semiconductors and Semimetals, vol. 69. Elsevier, 2001, pp. 1-24.
[7] S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen, M. S. Dresselhaus, R. B. Kaner, et al. "Nanostructured Bulk Silicon as an Effective Thermoelectric Material," Advanced Functional Materials, vol. 19, no. 15, pp. 2445- 2452, 2009. http://dx.doi.org/10.1002/adfm.200900250
[8] X. Tan, H. Liu, Y. Wen, H. Lv, L. Pan, J. Shi, and X. Tang. "Optimizing the thermoelectric performance of zigzag and chiral carbon nanotubes," Nanoscale Research Letters, vol. 7, no. 1, pp. 1-7, 2012. http://dx.doi.org/10.1186/1556-276X-7-116.
[9] R. Czerw, M. Terrones, J. C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, et al. "Identification of Electron Donor States in N-Doped Carbon Nanotubes," Nano Letters, vol. 1, no. 9, pp. 457-460, 2001. http://dx.doi.org/10.1021/nl015549q
[10] K. Bradley, S.-H. Jhi, P. G. Collins, J. Hone, M. L. Cohen, S. G. Louie, and A. Zettl. "Is the Intrinsic Thermoelectric Power of Carbon Nanotubes Positive?," Physical Review Letters, vol. 85, no. 20, pp. 4361-4364, 2000. http://dx.doi.org/10.1103/PhysRevLett.85.4361
[11] G. S. Park, J.-S. Lee, S. T. Kim, S. Park, and J. Cho. "Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn-air batteries," Journal of Power Sources, vol. 243, pp. 267-273, 2013. http://dx.doi.org/10.1016/j.jpowsour.2013.06.025
[12] Y. M. Choi, D. S. Lee, R. Czerw, P. W. Chiu, N. Grobert, M. Terrones, M. Reyes-Reyes, et al. "Nonlinear Behavior in the Thermopower of Doped Carbon Nanotubes Due to Strong, Localized States," Nano Letters, vol. 3, no. 6, pp. 839-842, 2003. http://dx.doi.org/10.1021/nl034161n
[13] D. A. Baker and T. G. Rials. "Recent advances in low-cost carbon fiber manufacture from lignin," Journal of Applied Polymer Science, vol. 130, no. 2, pp. 713-728, 2013. http://dx.doi.org/10.1002/app.39273
[14] J. Spender, A. L. Demers, X. Xie, A. E. Cline, M. A. Earle, L. D. Ellis, and D. J. Neivandt. "Method for production of polymer and carbon nanofibers from water-soluble polymers.," Nano letters, vol. 12, pp. 3857-3860, 2012. http://dx.doi.org/10.1021/nl301983d
[15] M. Inagaki, Y. Yang, and F. Kang. "Carbon nanofibers prepared via electrospinning," Advanced Materials, vol. 24, no. 19, pp. 2547–2566, 2012. http://dx.doi.org/10.1002/adma.201104940
[16] L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, and D. Zhu. "Super-hydrophobic surface of aligned polyacrylonitrile nanofibers," Angewandte Chemie International Edition, vol. 41, no. 7, pp. 1221-1223, 2002. http://dx.doi.org/10.1002/1521-3773(20020402)41:7%3C1221::AID-ANIE1221%3E3.0.CO;2-G
[17] C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, and F. S. Bates. "Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup," Polymer, vol. 48, no. 11, pp. 3306-3316, 2007. http://dx.doi.org/10.1016/j.polymer.2007.04.005
[18] T. Nakajima, K. Kajiwara, and J. E. McIntyre, Advanced Fiber Spinning Technology. WoodHead Publishing Limited, Abington Hall, 2009.
[19] S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers. World Scientific Publishing Co. Pte. Ltd., 2005.
[20] A. Greiner and J. H. Wendorff. "Electrospinning: a fascinating method for the preparation of ultrathin fibers," Angewandte Chemie International Edition, vol. 46, no. 30, pp. 5670-5703, 2007. http://dx.doi.org/10.1002/anie.200604646
[21] K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. D. Hoyos, H. Vasquez, and K. Lozano. "Electrospinning to ForcespinningTM," Materialstoday, vol. 13, pp. 12-14, 2010. http://dx.doi.org/10.1016/S1369-7021(10)70199-1
[22] M. A. Hunt, T. Saito, R. H. Brown, A. S. Kumbhar, and A. K. Naskar. "Patterned functional carbon fibers from polyethylene.," Advanced Materials, vol. 24, no. 18, pp. 2386-2389, 2012. http://dx.doi.org/10.1002/adma.201104551
[23] B. Weng, F. Xu, A. Salinas, and K. Lozano. "Mass production of carbon nanotube reinforced poly(methyl methacrylate) nonwoven nanofiber mats," Carbon, vol. 75, pp. 217-226, 2014. http://dx.doi.org/10.1016/j.carbon.2014.03.056
[24] Y. Rane, A. Altecor, and K. Lozano. "Preparation of superhydrophobic Teflon? AF 1600 sub-micron fibers and yarns using the ForcespinningTM technique," Journal of Engineered Fibers and Fabrics, vol. 8, no. 4, pp. 88-95, 2013. http://www.jeffjournal.org/papers/Volume8/V8I4%2811%29 K. Lozano.pdf
[25] L. D. Cremar, J. Acosta-Martinez, A. Villarreal, A. Salinas, L. Wei, Y. Mao, and K. Lozano. "Multifunctional carbon nanofiber systems mass produced from water soluble polymers," Chemical Fibers International vol. 66, no. 1, pp. 40-42, 2016.
[26] L. D. Cremar, J. Acosta-Martinez, A. Villarreal, A. Salinas, L. Wei, Y. Mao, and K. Lozano. "Multifunctional carbon nanofiber systems mass produced from water soluble polymers and low temperature processes," TextileTechnology: Chemical Fibers International Fiber production. No. 1, Document 6, pp. 1-17, 2016. http://textination.de/de/document/1145985479292875/2.0/.
[27] L. D. Cremar, J. Acosta-Martinez, A. Villarreal, A. Salinas, and K. Lozano. "Mechanical and electrical characterization of carbon nanofibers produced from water soluble precursors," Materials Today Communications, vol. 7, pp. 134-139, 2016. http://dx.doi.org/10.1016/j.mtcomm.2016.04.006
[28] U. K. Fatema, A. J. Uddin, K. Uemura, and Y. Gotoh. "Fabrication of carbon fibers from electrospun poly(vinyl alcohol) nanofibers," Textile Research Journal vol. 81, pp. 659-672, 2010. http://dx.doi.org/10.1177/0040517510385175
[29] Z. R. Ismagilov, A. E. Shalagina, O. Y. Podyacheva, A. V. Ischenko, L. S. Kibis, A. I. Boronin, Y. A. Chesalov, et al. "Structure and electrical conductivity of nitrogen-doped carbon nanofibers," Carbon, vol. 47, no. 8, pp. 1922-1929, 2009. http://dx.doi.org/10.1016/j.carbon.2009.02.034
[30] T. Sharifi, M. Valvo, E. Gracia-Espino, R. Sandstr?m, K. Edstr?m, and T. W?gberg. "Hierarchical selfassembled structures based on nitrogen-doped carbon nanotubes as advanced negative electrodes for Li-ion batteries and 3D microbatteries," Journal of Power Sources, vol. 279, pp. 581-592, 2015. http://dx.doi.org/10.1016/j.jpowsour.2015.01.036
[31] G. Panomsuwan, N. Saito, and T. Ishizaki. "Nitrogen-Doped Carbon Nanoparticle-Carbon Nanofiber Composite as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction Reaction," ACS Applied Materials & Interfaces, vol. 8, no. 11, pp. 6962-6971, 2016. http://dx.doi.org/10.1021/acsami.5b10493
[32] F. Lai, Y.-E. Miao, Y. Huang, Y. Zhang, and T. Liu. "Nitrogen-Doped Carbon Nanofiber/Molybdenum Disulfide Nanocomposites Derived from Bacterial Cellulose for High-Efficiency Electrocatalytic Hydrogen Evolution Reaction," ACS Applied Materials & Interfaces, vol. 8, no. 6, pp. 3558-3566, 2016. http://dx.doi.org/10.1021/acsami.5b06274
[33] A. Hachimi, B. Merzougui, A. Hakeem, T. Laoui, G. M. Swain, Q. Chang, M. Shao, et al. "Synthesis of Nitrogen-Doped Carbon Nanotubes Using Injection-Vertical Chemical Vapor Deposition: Effects of Synthesis Parameters on the Nitrogen Content," Journal of Nanomaterials, vol. 2015, no. 453725, pp. 1-9, 2015. http://dx.doi.org/10.1155/2015/453725
[34] L-C. Chen, P-Y. Peng, L-F. Lin, T. C. K. Yang, and C.-M. Huang. "Facile Preparation of Nitrogen-Doped Activated Carbon for Carbon Dioxide Adsorption," Aerosol and Air Quality Research, vol. 14, no. 3, pp. 916-927, 2014. http://dx.doi.org/10.4209/aaqr.2013.03.0089
[35] A. E. Shalagina, Z. R. Ismagilov, O. Y. Podyacheva, R. I. Kvon, and V. A. Ushakov. "Synthesis of nitrogencontaining carbon nanofibers by catalytic decomposition of ethylene/ammonia mixture," Carbon, vol. 45, no. 9, pp. 1808-1820, 2007. http://dx.doi.org/10.1016/j.carbon.2007.04.032.
[36] W. H. Lee, J. G. Lee, and P. J. Reucroft. "XPS study of carbon fiber surfaces treated by thermal oxidation in a gas mixture of O2/(O2+N2)," Applied Surface Science, vol. 171, no. 1-2, pp. 136-142, 2001. http://dx.doi.org/10.1016/S0169-4332(00)00558-4
[37] A. Bratt and A. R. Barron. "XPS of Carbon Nanomaterials," Available: http://cnx.org/content/m34549/1.2/
[38] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, 1992.
[39] E. Andreoli and A. R. Barron. "Correlating Carbon Dioxide Capture and Chemical Changes in Pyrolyzed Polyethylenimine-C60," Energy & Fuels, vol. 29, no. 7, pp. 4479-4487, 2015. http://dx.doi.org/10.1021/acs.energyfuels.5b00778
[40] H. Kiuchi, T. Kondo, M. Sakurai, D. Guo, J. Nakamura, H. Niwa, J. Miyawaki, et al. "Characterization of nitrogen species incorporated into graphite using low energy nitrogen ion sputtering," Physical Chemistry Chemical Physics, vol. 18, no. 1, pp. 458-465, 2016. http://dx.doi.org/10.1039/c5cp02305j
[41] K. Artyushkova, B. Kiefer, B. Halevi, A. Knop-Gericke, R. Schlogl, and P. Atanassov. "Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures," Chemical Communications, vol. 49, no. 25, pp. 2539-2541, 2013. http://dx.doi.org/10.1039/c3cc40324f
[42] J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. Jiménez-Mateos "Origin of the Large N 1s Binding Energy in X-ray Photoelectron Spectra of Calcined Carbonaceous Materials," Journal of the American Chemical Society, vol. 118, no. 34, pp. 8071-8076, 1996. http://dx.doi.org/10.1021/ja960338m
[43] W.-H. Chiang, G.-L. Chen, C.-Y. Hsieh, and S.-C. Lo. "Controllable boron doping of carbon nanotubes with tunable dopant functionalities: an effective strategy toward carbon materials with enhanced electrical properties," RSC Advances, vol. 5, no. 118, pp. 97579-97588, 2015. http://dx.doi.org/10.1039/c5ra20664b.