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Abstract This paper is devoted to the large time behavior and especially to the regularity of the
global attractor of the dissipative 1D nonlinear Schrödinger equation with nonlocal integral term on
R. We first prove that the existence of the global attractor Aγ in the strong topology of H1(R) and
the existence of the exponential attractorM which contains the global attractor Aγ , are still finite
dimensional, and attract the trajectories exponentially fast. We also show that the global attractor
Aγ is regular, i.e., Aγ is included, bounded and compact in H2(R) assuming that the forcing term
f(x) is of class H2(R). Furthermore we estimate the number of the determining modes for this
equation. Moreover, we show that the solution trajectories and the global attractor of the nonlocal
Schrödinger equation converge to those of the usual Schrödinger equation, as the coefficient of the
nonlocal integral term goes to zero.
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1 Introduction

This paper is devoted to the large time behavior and especially to the regularity of the global attractor of
the following dissipative 1D nonlinear Schrödinger (NLS) equation with nonlocal integral term on R:

iut + uxx + |u|2u+ γu

∫ x

−∞
|u|2dx+ iαu = f(x), t ∈ (0,+∞), x ∈ R, (1.1)

u(x, 0) = u0(x), x ∈ R, (1.2)

where the damping parameter α > 0 and the dispersion parameter γ ∈ R, the unknown function
u = u(x; t) is complex and the complex function f(x);x ∈ R is known. Throughout this paper, let u
is the complex conjugate of u, |u|2 = uu. Set ‖u‖2 =: ‖u‖2

L2(R) =
∫

R |u|
2dx, ‖u‖2

H1(R) = ‖u‖2 + ‖ux‖2,
‖u‖2

H2(R) = ‖u‖2 + ‖ux‖2 + ‖uxx‖2, and H−1(R) is the dual space of H1(R).
Equation (1.1) models the influence of ion inertia upon the nonlinear Langmuir waves on the basis of

the Zakharov equations that perturbs the classical NLS equation

iut + uxx + |u|2u+ iαu = f. (1.3)

The long time behavior of solutions to (1.3) has been studied in many papers. For example, in [44], the
existence of global attractor for NLS was obtained by energy equation. In [15], the existence of the global
attractor was established and the finite dimensionality of the attractor for NLS was proved. It was also
proved that the global attractor is regular provided that the function f(x) is smooth enough. On the
other hand, the regularity of the global attractor was proved in [17] for the one dimensional case with
periodic boundary conditions. This result improved that of [15] where the existence of a global attractor
for the weak topology in H1([0, 1]) was proved (among other results). In the one dimensional case, it
was also proved in [17] that the attractor is made of C∞([0, 1]) functions if the external force f(x) is
C∞([0, 1]). This result was recently improved in [38], where the authors proved that the global attractor
is included in Gevrey space if the external force f(x) belongs to some Gevrey space.

Equation (1.1) was first studied by [30] which gives the derivation of the nonlocal integral term with
f = α = 0. For equation (1.1), Huang has proved in [29] that there also exists a compact global attractor
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in a special weighted space. Later, Ma and Chang [33] studied the semi-dicretized NLS equation (1.1) and
proved that for each mesh size, there exist attractors for the discretized system. In the one-dimensional
case for Equation (1.1), it is also proved in [47] that the attractor is made of H2([0, 1]) functions if the
external force f(x) is H2([0, 1]). In this paper, our main aim is to improve results in [47]. To this end, we
first prove that the existence of the global attractor Aγ in the strong topology of H1(R) and the existence
of the exponential attractorM which contains the global attractor Aγ , are still finite dimensional, and
attract the trajectories exponentially fast. Secondly, we prove that the global attractor Aγ is regular, i.e.,
Aγ is included, bounded and compact in H2(R) assuming that f(x) is of class H2(R). Furthermore we
estimate the number of the determining modes for this equation. Moreover, we show that the solution
trajectories and the global attractor of the nonlocal Schrödinger equation converge to those of the usual
Schrödinger equation, as the coefficient of the nonlocal integral term goes to zero.

It is well known that the existence of the global attractor for dissipative evolution equations has
always relied on some kind of compactness of the semigroup generated by such equations. Usually,
this compactness is obtained through some regularization property of such equations together with the
compact imbedding of the relevant Sobolev spaces (see [42] for instance). This approach is only suitable
for bounded domains, the Sobolev imbeddings are no longer compact otherwise. For unbounded domains,
the remedy was to consider weighted spaces (see F. Abergel [1,2], A. V. Babin [3], A. V. Babin and M. I.
Vishik [6], and E. Feireisl et al [11]), but with the drawback that the forcing term and in some cases even
the initial condition had to be restricted to the weighted spaces. Similarly, for equation (1.1), Huang has
proved in [29] that there also exists a compact global attractor in a special weighted space, provided the
effect of the zero-order dissipation is large enough.

In section 2, our aim is to avoid weighted spaces by methods in [12,31] and by the so-called Kuratowski
α-measure of noncompactness to prove the asymptotical smoothness of Sγ(t). The idea of using the
Kuratowski α-measure to obtain the existence of the global attractor was successfully applied to weakly
damped Klein-Gordon-Schrödinger equations by B. L. Guo and Y. S. Li [20]. For that purpose, we are
going to establish time-uniform a priori estimates of solutions u in L2(R), next in H1(R) and in H2(R).
Then we apply these estimates to obtain the existence of the global solutions and bounded absorbing sets
in H1(R). Next we shall split Sγ(t) so that we can make use of Kuratowski α-measure of noncompactness
to prove the asymptotical smoothness of Sγ(t). Thus, by the theory in [22], we can prove the following
theorem about existence of maximal compact attractor.

Theorem 1.1 Let f ∈ H1(R), Sγ(t) be the semigroup generated by (1.1)-(1.2). Then there exists a set
Aγ ⊂ H1(R) satisfying:

(I) Sγ(t)Aγ = Aγ , ∀t ≥ 0;
(II) lim

t→∞
distH1(R)(Sγ(t)B,Aγ) = lim

t→∞
sup
y∈B

distH1(R)(Sγ(t)B,Aγ) = 0, ∀B ⊂ H2(R) bounded;

(III) Aγ is compact in H1(R). That is, Aγ is a maximal compact attractor in H1(R) which attracts
bounded sets of H2(R) in the topology of H1(R).

Here, it is worth mentioning that in [45], the authors introduced a new concept, called the norm-to-weak
continuous semigroup in a Banach space, and gave a technical theorem to verify this notion of continuity.
Then they established a general method which is necessary and sufficient to obtain the existence of the
global attractor for this kind of semigroup. By this method, we improved this result in our another paper.

In section 3, we shall prove the existence of exponential attractor. It follows from the previous literature
(see [22,42] for instance) that it is not always possible to embed the global attractor into a proper smooth
finite dimensional manifold. Nevertheless, and also in view of the possible defaults of the global attractor
as discussed in the introduction, it can be useful to construct larger (not necessarily smooth) sets which
contain the global attractor and are still finite dimensional, and attract the trajectories exponentially fast.
This led Eden, Foias, Nicolaenko, and Temam to propose the notation of an exponential attractor (also
sometime called an inertial set) in [10]. In this section, we shall prove the following theorem about the
existence of exponential attractor.

Theorem 1.2 There exists a positively invariant subset B of H1(R) such that Aγ ⊂ B and the dynamical
system ({Sγ(t)}t≥0, B,H

1(R)) admits an exponential attractorM.
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In section 4, we shall prove that the global attractor Aγ is regular. For dissipative evolutionary partial
differential equations, which enjoy asymptotic smoothness (also called asymptotic compactness) properties,
the set J of all globally defined and bounded solutions for t ∈ R, plays a special role [39]. In general,
the elements in this set J should enjoy certain regularity properties in space and the trajectories in
J should be as smooth in the time variable as the nonlinearity of the equation. We point out that, in
the autonomous case, under additional dissipation hypotheses, this set J coincides with the compact
global attractor of the equation. These spaces or time regularity properties of J are obviously true for
equations, which are smooth in finite time, such as ordinary differential equations or semi-linear parabolic
equations [27]. For example, the Navier-Stokes equations have this property of smoothness in finite time.
When the system is not smooth in finite time, regularity (in space or time) of the elements J can be
very difficult to prove or could be even false. Note that regularity results are primordial in the theory
of perturbations of invariant sets and in particular of periodic orbits, as shown in [24] (see also [25]).
Numerous authors have shown regularity properties for J in the case of dynamical systems which are
not smoothness in finite time. For retarded functional differential equations in Rn with finite delay or
neutral functional differential equations, such results were already obtained thirty years ago by Hale
[21], Lopes [32], Nussbaum [37]. For dissipative evolutionary equations, which admit a compact global
attractor, regularity results have been proved by several authors, using different methods (for the earliest
results, see, for example, [16] for the damped wave equation, [17,18,38] for the weakly damped Schrödinger
equations, [35] for the weakly damped, forced Korteweg de Vries equation, and [41] for a review). In [16],
in a same argument, Ghidaglia and Temam have shown space and time regularity in Ck-type spaces for
the global attractor of the damped wave equation (from their proof, one could not deduce analyticity
neither in time, nor in the spatial variables). In [17], Goubet showed the existence of the compact global
attractor and its regularity in Hk([0, 1])-spaces for the one-dimensional weakly Schrödinger wave equation
by using a Galerkin method. Applying the same Galerkin method, Oliver and Titi [38] have shown that
this compact global attractor belongs actually to a Gevrey regularity class. By the same method, Wang
[43] obtained the regularity results for global attractor of Benjamin-Bona-Mahony equation in a bounded
interval Ω ⊂ R.

Here we follow a similar strategy, however, our proofs are more complex because the problems (1.1)-
(1.2) are studied on unbounded domain R and because of the presence of the non-local nonlinear term
γu
∫ x
−∞ |u|

2dx. We introduce a splitting of the high-frequency part of the solution u of (1.1)-(1.2) into
a regular part and a small one that converges towards 0 when t goes to infinity, and we devote to the
existence result for the regular part. We also study the long time behavior of the difference between the
high frequency part of u and its regular part. In order to prove the regularity of global attractor, we
have to impose some assumption on the force f , that is f(x) ∈ H2(R). Then, we apply those results to
complete the proofs of the following theorem.

Theorem 1.3 If f(x) is H2(R) complex-valued functions, then the global attractor Aγ is included,
bounded and compact in H2(R).

In section 5, we shall deduce the so-called "finite number of determining modes property" for the
system (1.1)-(1.2). The property of "finite number of determining modes" was introduced and proved
for the two-dimensional Navier-Stokes equations by Foias and Prodi in 1967 [14] and generalized by C.
Foias, O. Manley, R. Temam and Y. Treve [13]. It was shown for the two-dimensional Navier-Stokes
equations that the large time behavior of the orbits is completely determined by its projection on a spectral
infinte-dimensional space. This result was subsequently extended to numerous (strongly) dissipative
equations. In [23], Hale and Raugel introduced the Galerkin method to obtain determining modes property
for the general frame of semilinear equations. Following Goubet [17] we want to show that the orbits
on global attractor Aγ are fully determined by their projections PN , where N is sufficiently large. This
property tells that the asymptotic behavior in terms of (1.1)-(1.2) depends only on a finite number of
determining modes.

Theorem 1.4 Let {u1(t)} and {u2(t)} be two complete orbits of Aγ such that PNu1(t) = PNu2(t), for
all t ∈ R, and N ≥ N0, N0 as in Lemma 4.1 below. Then u1(t) = u2(t), for all t ∈ R.
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We point out that we also could directly prove Theorem 1.4, without applying Theorem 1.3, by
performing appropriate a priori estimates. But, showing Theorem 1.4 as a consequence of Theorem 1.3 is
much shorter.

In section 6, we will show that individual solution trajectories and the global attractor for the nonlocal
Schrödinger equation (1.1) converge to the solution trajectories and the global attractor of the usual
Schrödinger equation (1.3), as the coefficient γ of the nonlocal integral term goes to zero. General
convergence result for the global attractor is available in Hale et al. [22], Temam [42] and Hale, Lin and
Raugel [26]. Similar applications can also be found in Hill and Sulin [28]. Let us denote by Sγ(t) and S(t)
the solution operator for the nonlocal Schrödinger equation (1.1), and the usual Schrödinger equation
(1.3), respectively. We need to verify a few conditions that will ensure the convergence of the solution
trajectories and attractors. In particular, we should show that operators Sγ(t) and S(t) satisfy

‖Sγ(t)u0 − S(t)u0‖H1(R) ≤ Γ (γ, t, u0),

where Γ (γ, t, u0)→ 0 as γ → 0, and that the domain of attraction of Sγ(t) is independent of γ. For more
details of these conditions see Theorem I.1.2 of Temam [42], or Theorem 2.4 of Hale, Lin and Raugel [26].

Theorem 1.5 When the coefficient γ goes to zero, a solution trajectory of (1.1) converges in H1(R) to
a solution trajectory of (1.3), as long as both trajectories start at the same initial point. Furthermore, the
global attractor of (1.1) converges in H1(R) to the global attractor of (1.3).

This paper is organized as follows. In Section 2, by the Kuratowski α-measure of noncompactness, we
prove the existence of maximal compact attractor. In Section 3, we shall prove the existence of exponential
attractor. In Section 4, we shall prove that the global attractor Aγ is regular. In Section 5, we show that
the orbits on global attractor A are fully determined by their projections PN , where N is sufficiently
large. In Section 6, we will show that individual solution trajectories and the global attractor for the
nonlocal Schrödinger equation (1.1) converge to the solution trajectories and the global attractor of the
usual Schrödinger equation (1.3), as the coefficient γ of the nonlocal integral term goes to zero.

2 Proof of Theorem 1.1

In this section, we shall prove the existence of global attractor for the problems (1.1)-(1.2). To this end,
let us start with the following lemmas:

Lemma 2.1 [29] (i) Let f ∈ L2(R). Then for every u0 ∈ H1(R), there exists a unique solution
u(t) ∈ C((0,+∞), H1(R)) ∩ C1((0,+∞), H−1(R)) to (1.1)-(1.2). Moreover, the solution operator Sγ(t):
u0 7→ u(t) is continuous from H1(R) onto itself and has a bounded absorbing set

B =
{
u | u ∈ H1(R), ‖u‖H1(R) ≤ ρ

}
⊂ H1(R). (2.1)

(ii) Let f ∈ L2(R). Then for every u0 ∈ H2(R), there exists a unique solution u(t) ∈ C((0,+∞), H2(R))∩
C1((0,+∞), L2(R)) to (1.1)-(1.2). Moreover, the solution operator Sγ(t): u0 7→ u(t) is continuous from
H2(R) onto itself and has a bounded absorbing set B2 ⊂ H2(R).

If f(x) ∈ L2(R) is independent of t, then Sγ(t) forms a semigroup. In order to prove the existence
of global attractor, we have to impose some assumption on the force f , that is f(x) ∈ H1(R). Let
B ⊂ H1(R) be a bounded set, then Sγ(t)B ⊂ H1(R) is also bounded. In this section we shall split
Sγ(t) so that we can make use of the so-called Kuratowskii α-measure of noncompactness to prove the
asymptotic smoothness of Sγ(t). More precisely, we split Sγ(t) into two parts: S1(t) and S2(t), with
α(S1(t)B) → 0 as t → ∞ and S2(t)B is relatively compact in H1(R), where the α-measure of a set
A ⊂ H1(R) is defined by α(A) ≡ inf{d |there is a finite covering of A of diameter < d}. Then

α(Sγ(t)B) ≤ α(S1(t)B) + α(S2(t)B) = α(S1(t)B)→ 0 as t→∞.
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Let B ⊂ H1(R) with sup
u∈B
‖u‖H2(R) ≤ R, u(t) = Sγ(t)u0 be the solution of (1.1)- (1.2) with initial data

u0 ∈ B. Recall that u(t) is uniformly bounded in H2(R). For L > 0, we consider a C∞-smooth cut-off
function χL such that 0 ≤ χL ≤ 1 and

χL(x) =
{

1, if |x| ≤ L,
0, if |x| ≥ 1 + L.

Since f ∈ H1(R), the sequence (fχL) converges to f in H1(R) as L → +∞. Thus, for any η ∈ (0, 1),
there exists L(η) > 0 such that

‖f − fη‖H1(R) ≤ η, where fη = fχL(η) (2.2)

Since H2(R) is continuously embedded in L∞(R), thus u ∈ C([0,+∞), L∞(R)), uxx ∈ C([0,+∞), L2(R))
and the nonlinear terms |u|2u ∈ C([0,+∞), L∞(R)), u

∫ x
−∞ |u|

2dx ∈ C([0,+∞), L∞(R)). We then infer
from linear semigroup theory [40] that the problem:

ivηt + (1− iη)vηxx + |u|2vη + γvη

∫ x

−∞
|u|2dx+ iαvη = f − fη − iηuxx, (2.3)

vη(x, 0) = u0(x), (2.4)

has a unique solution vη ∈ C1((0,+∞), L2(R)) ∩ L2
loc((0,+∞), H1(R)). We define a function wη of

C1((0,+∞), L2(R)) by wη = u− vη, then wη satisfies the following equation:

iwηt + (1− iη)wηxx + |u|2wη + γwη

∫ x

−∞
|u|2dx+ iαwη = fη, (2.5)

wη(x, 0) = 0. (2.6)

Next we shall prove the following two lemmas.

Lemma 2.2 There exists a function τ(η): (0, 1)→ [0,+∞) and a constant k1 > 0 depending only on γ,
f such that, for any η ∈ (0, 1) and u0 ∈ H2(R),

‖vη‖H1(R) ≤ k1, t ≥ 0, (2.7)
‖vη‖H1(R) ≤ k1

√
η, t ≥ τ(η). (2.8)

Proof. Multiplying (2.3) by vη, taking the imaginary part, and integrating on R, we obtain

d

dt
‖vη‖2 + 2η‖vηx‖2 + 2α‖vη‖2 ≤ 2‖f − fη‖‖vη‖+ 2η‖ux‖‖vηx‖.

It follows from Lemma 2.1 that ‖ux‖ < ρ1 for any t ≥ 0. Thus, using also (2.2), we come to:

d

dt
‖vη‖2 + 2η‖vηx‖2 + 2α‖vη‖2 ≤ 2η‖vη‖+ 2ηρ1‖vηx‖,

hence d
dt‖vη‖

2 + α‖vη‖2 ≤
(
ρ2

1 + 1
γ

)
η. By Gronwall inequality,

‖vη‖2 ≤ ‖u0‖2e−αt +
(
ρ2

1 + 1
γ

)
η

α
(1− e−αt). (2.9)

On the other hand, multiplying (2.3) by vηxx, taking the imaginary part, and integrating on R, we obtain

d

dt
‖vηx‖2 + 2η‖vηxx‖2 + 2α‖vηx‖2

≤ 2(‖f − fη‖+ η‖uxx‖+ γ‖u‖2‖vη‖+ ‖u‖2
L∞‖vη‖)‖vηxx‖.

Thus, d
dt‖vηx‖

2 + α‖vηx‖2 ≤ ηC7, by Gronwall inequality,

‖vηx‖2 ≤ ‖u0x‖2e−αt + ηC7

α
(1− e−αt). (2.10)

Then, (2.7) and (2.8) follows at once from (2.10), the proof of Lemma 2.2 is completed.
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Lemma 2.3 For any η ∈ (0, 1), there exists a constant k2(η) > 0 depending only on γ, f and η such
that, for any u0 ∈ H2(R),

‖xwη‖H1(R) ≤ k2(η), t ≥ 0. (2.11)

Proof. We infer from Lemma 2.1 and Lemma 2.2 that ‖u(t)‖H1(R) ≤ ρ1, ‖vη(t)‖H1(R) ≤ k1, t ≥ 0.
Multiplying (2.5) by x2wη, taking the imaginary part, and integrating on R, we obtain

d

dt
‖xwη‖2 + 2α‖xwη‖2 + 2η‖xwηx‖2 ≤ 4(1 + η)‖xwηx‖‖wη‖+ 2

∫
R
x2|fηwη|dx.

Since fη has compact support, |x|fη ∈ L2(R),
d

dt
‖xwη‖2 + 2α‖xwη‖2 ≤ 4(η + 1

η
)‖‖wη‖+ 2‖xwη‖‖xfη‖,

then
d

dt
‖xwη‖2 + α‖xwη‖2 ≤ C8

(
1 + 1

η
+ ‖xfη‖2

)
.

Gronwall lemma then yields

‖xwη‖2 ≤ C9

(
1 + 1

η
+ ‖xfη‖2

)
, t ≥ 0. (2.12)

Now let us differentiate (2.5) with respect to x, this leads to

iwηxt + (1− iη)wηxxx + (|u|2)xwη + |u|2wηx

+γ|u|2wη + γwηx

∫ x

−∞
|u|2dx+ iαwηx = fηx, (2.13)

wηx(x, 0) = 0, (2.14)

Multiplying (2.13) by x2wηx, taking the imaginary part, and integrating on R, we obtain
d

dt
‖xwηx‖2 + 2α‖xwηx‖2 + 2η‖xwηxx‖2

= 4
∫

R
xIm(wηxwηxx)dx− 4η

∫
R
xRe(wηxwηxx)dx

−2Im
∫

R
((|u|2)x + γ|u|2)wηx2wηxdx+ 2

∫
R
x2Im(fηxwηx)dx.

By Young inequality and (2.12) we get
d

dt
‖xwηx‖2 + α‖xwηx‖2 ≤ C10

(
1 + 1

η
+ ‖xfηx‖2

)
.

Gronwall lemma then yields

‖xwηx‖2 ≤ C10

(
1 + 1

η
+ ‖xfηx‖2

)
, t ≥ 0. (2.15)

The proof of Lemma 2.3 is completed.
Now we are going to prove the Theorem 1.1. To this end, we need the following compact imbedding

Lemma.

Lemma 2.4 ([20]) Let s > s1 be integers. Then the imbedding of Hs(Rn) ∩Hs1(Rn, (1 + |x|2)dx) into
Hs1(Rn) is compact.

Proof of Theorem 1.1. From Lemmas 2.3 and 2.4 we see that S2(t) defined by (2.5)-(2.6) is compact
from H2(R) into H1(R). Therefore for any B ⊂ H2(R) bounded, α(S2(t)B) = 0, ∀t ≥ 0. From
Lemma 2.2, we find that ∀ε > 0, there exist an η and thus a t0 > 0 such that ‖S1(t)u0‖ ≤ ε, ∀t ≥ t0,
and u0 ∈ B, B ⊂ H2(R) bounded. That is, for such η > 0, α(S1(t)B) ≤ 2ε, as t ≥ t0, so we have
α(Sγ(t)B) ≤ α(S1(t)B) + α(S2(t)B) = α(S1(t)B) ≤ 2ε, as t ≥ t0. Hence lim

t→∞
α(Sγ(t)B) = 0. Therefore

Sγ(t) is asymptotically smooth. By the theory in [22] we complete the proof of Theorem 1.1.

Advances in Analysis, Vol. 1, No. 1, July 2016 45

Copyright © 2016 Isaac Scientific Publishing AAN



3 Proof of Theorem 1.2

In this section, we shall prove the existence of exponential attractor for the problems (1.1)-(1.2). To this
end, let us start with the following definitions and lemmas:

Definition([5,7]) A compact set M ⊂ X is an exponential attractor for S(t) if (i) it has finite
fractal dimension, dimFM < +∞; (ii) it is positively invariant, S(t)M ⊂ M, for every t ∈ [0,+∞);
(iii) it attracts exponentially the bounded subsets of X in the following sense: ∀B ⊂ X bounded,
dist(S(t)B,M) ≤ Q(‖B‖X)e−αt, t ∈ [0,+∞), where the positive constant α and the monotonic function
Q are independent of B.

It follows from this definition that an exponential attractor, if it exists, contains the global attractor.
The existence of exponential attractors relies on a dichotomy principle, called the squeezing property.
Because of its importance, we recall its definition.

Definition([10,34]) Let X be a subset of a Hilbert space H; let S be a mapping from X to X,
SX ⊂ X. We say that S has squeezing property in X if for some δ ∈ (0, 1

4 ), there exists an orthogonal
projection P = P (δ) of rank equal to N0(δ) such that for every u and v in X either ‖(I−P )(Su−Sv)‖H ≤
‖P (Su− Sv)‖H, or ‖Su− Sv‖H ≤ δ‖u− v‖H.

We can note that this property makes an essential use of orthogonal projectors with finite rank, so
the corresponding construction is valid in Hilbert spaces only.

Theorem 3.1 ([5]) Let X be a closed invariant set in a Hilbert space H such that there exists a covering
of X by a finite number of balls of radius 1. Let the semigroup {S(t)} have a global attractor on H. Let
for a fixed t > 0, S(t) have a squeezing property and be uniformly Lipschitzian on X. Then {S(t)} has an
exponential attractor on X.

Now, we take H = H1(R) and choose X = B as in (2.4). Using Theorem 3.1 we are able to prove
the existence of exponential attractor. That is, the proof of Theorem 1.2 is based on the following three
lemmas, that is, Lemma 3.2-3.4 below.

Lemma 3.2 There exists an invariant set B ⊂ H1(R) which can be covered by a finite number of unite
balls.

The proof of Lemma 3.2 is standard (See [31]), so we omit it.

Lemma 3.3 The operators {Sγ(t)} are Lipschitzian on B for any t ≥ 0 (the Lipschitz constant depends
on t).

According to the definition of the mapping Sγ(t), Sγ(t)u0 − Sγ(t)v0 = u(t)− v(t), where u(t) and v(t)
are solutions of (1.1), with initial value u0 and v0, respectively. Subtracting the equations for u and v, we
obtain the equation

iwt + wxx + iαw + (|u|2 + |v|2)w + uvw

+γw
∫ x

−∞
|u|2dx+ γv

∫ x

−∞
(uw + wv)dx = 0, t > 0, x ∈ R, (3.1)

w(x, 0) = u0(x)− v0(x), x ∈ R, (3.2)

Proof. Multiplying (3.1) by w, taking the imaginary part, and integrating on R, we obtain

d

dt
‖w‖2 + 2α‖w‖2 = −2Im

∫
R
uvw2dx− 2γIm

∫
R
v

[∫ x

−∞
(uw + wv)dx

]
wdx

≤ 2‖u‖L∞(R)‖v‖L∞(R)‖w‖2 + 2γ(‖u‖+ ‖v‖)‖v‖‖w‖2.
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Hence, d
dt‖w‖

2 ≤ C‖w‖2, by Gronwall inequality, we have ‖w(t)‖2 ≤ eCt. Now multiplying (3.1) by wxx,
taking the imaginary part, and integrating on R, we obtain

d

dt
‖wx‖2 + 2α‖wx‖2 = −2Im

∫
R
uvw2dx− 2γIm

∫
R
v

[∫ x

−∞
(uw + wv)dx

]
wdx

≤ 2‖u‖L∞(R)‖v‖L∞(R)‖w‖2 + 2γ(‖u‖+ ‖v‖)‖v‖‖w‖2.

Hence, d
dt‖w‖

2 ≤ C‖w‖2, by Gronwall inequality, we have ‖w(t)‖2 ≤ eCt. The proof of Lemma 3.3 is
completed.

Lemma 3.4 For any δ > 0 there exists such t > 0 and N that the operators {Sγ(t)} have a squeezing
property on B in the space H1(R).

Now our main goal is the proof of Lemma 3.4. The proof of Lemma 3.4 is based on the next three
technical lemmas, that is Lemma 3.5-3.7 below. For L > 0, we consider a C∞-smooth cut-off function χL
such that 0 ≤ χL ≤ 1 and

χL(x) =
{

1, if |x| ≤ L,
0, if |x| ≥ 1 + L.

(3.3)

Since u ∈ H1(R), the sequence (uχL) converges to u in H1(R) as L → +∞. Thus, for any η ∈ (0, 1),
there exists L(η) > 0 such that

‖(1− χL)uv‖H1(R) ≤ η, (3.4)
‖v − vη‖H1(R) ≤ η, (3.5)

Together with (3.1)-(3.2) we consider the equation

iΦt + (1− iη)Φxx + iαΦ+ (|u|2 + |v|2)(1− χL)Φ+ uv(1− χL)Φ

+γΦ(1− χL)
∫ x

−∞
|u|2dx+ γv(1− χL)

∫ x

−∞
(uΦ+ Φv)dx+ iηwxx = 0, t > 0, x ∈ R, (3.6)

Φ(x, 0) = w(x, 0) = u0(x)− v0(x), x ∈ R. (3.7)

Let Ψ = w − Φ. Obviously, Ψ satisfies the equation

iΨt + (1− iη)Ψxx + iαΨ + (|u|2 + |v|2)Ψ + uvΨ + γΨ

∫ x

−∞
|u|2dx

+γv
∫ x

−∞
(uΨ + Ψv)dx+ (|u|2 + |v|2)χLΦ+ γΦχL

∫ x

−∞
|u|2dx

+uvχLΦ+ γvχL

∫ x

−∞
(uΦ+ Φv)dx = 0, t > 0, x ∈ R, (3.8)

Ψ(x, 0) = 0, x ∈ R. (3.9)

Next we shall prove the following three lemmas.

Lemma 3.5 There exists a constant k1 > 0 such that, for η ∈ (0, 1) small sufficiently and w(x, 0) ∈
H1(R),

‖Φ‖H1(R) ≤ k1, t ≥ 0. (3.10)

Proof. Multiplying (3.6) by Φ, taking the imaginary part, and integrating on R, we obtain

d

dt
‖Φ‖2 + 2η‖Φx‖2 + 2α‖Φ‖2 = 2Im

∫
R
iηwxΦxdx

−2Im
∫

R
(1− χL)uvΦ2

dx− 2γIm
∫

R
v(1− χL)

[∫ x

−∞
uΦ+ Φvdx

]
Φdx

≤ 2η‖wx‖‖Φx‖+ 2η‖Φ‖2 + 2γη(‖u‖+ ‖v‖)‖Φ‖2.
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Let η small sufficiently, such that 2η[1 + γ(‖u‖+ ‖v‖)] ≤ α, then d
dt‖Φ‖

2 + α‖Φ‖2 ≤ Cη. By Gronwall
inequality

‖Φ‖2 ≤ ‖u0 − v0‖2e−αt + Cη

α
(1− e−αt), t ≥ 0. (3.11)

On the other hand, multiplying (3.6) by Φxx, taking the imaginary part, and integrating on R, we obtain

d

dt
‖Φx‖2 + 2η‖Φxx‖2 + 2α‖Φx‖2 = −2Im

∫
R
iηwxxΦxxdx− 2Im

∫
R
uv(1− χL)ΦΦxxdx

−2Im
∫

R
(|u|2 + |v|2)(1− χL)ΦΦxxdx− 2Im

∫
R
γΦ

[
(1− χL)

∫ x

−∞
|u|2dx

]
Φxxdx

−2Im
∫

R
γv(1− χL)

[∫ x

−∞
(uΦ+ Φv)dx

]
Φxxdx ≤ Cη‖Φxx‖.

Thus, d
dt‖Φx‖

2 + α‖Φx‖2 ≤ Cη, by Gronwall inequality

‖Φx‖2 ≤ ‖u0x − v0x‖2e−αt + Cη

α
(1− e−αt), t ≥ 0. (3.12)

Thus the proof of Lemma 3.5 is completed.

Lemma 3.6 There exists a constant k2 > 0 such that, for any η ∈ (0, 1),

‖Ψ‖H2(R) ≤ k2, t ≥ 0. (3.13)

Proof. Multiplying (3.8) by Ψ , taking the imaginary part, and integrating on R, we obtain

d

dt
‖Ψ‖2 + 2η‖Ψx‖2 + 2α‖Ψ‖2 = −2Im

∫
R
uvΨ

2
dx− 2Im

∫
R
uvχLΦΨdx

−2γIm
∫

R
v

[∫ x

−∞
(uΨ + Ψv)dx

]
Ψdx− 2γIm

∫
R
Φ

[
χL

∫ x

−∞
|u|2dx

]
Ψdx

−2γIm
∫

R
vχL

[∫ x

−∞
(uΦ+ Φv)dx

]
Ψdx ≤ C‖Ψ‖2.

Then by Gronwall inequality,

‖Ψ‖2 ≤ eCt, t ≥ 0. (3.14)

Multiplying (3.8) by Ψxx, taking the imaginary part, and integrating on R, we obtain

d

dt
‖Ψx‖2 + 2η‖Ψxx‖2 + 2α‖Ψx‖2 = −2Im

∫
R

(|u|2 + |v|2)ΨΨxxdx

−2Im
∫

R
uvΨΨxxdx− 2γIm

∫
R
Ψ

[∫ x

−∞
|u|2dx

]
Ψxxdx

−2γIm
∫

R
v

[∫ x

−∞
(uΨ + Ψv)dx

]
Ψxxdx− 2Im

∫
R

(|u|2 + |v|2)χLΦΨxxdx

−2Im
∫

R
uvχLΦΨxxdx− 2γIm

∫
R
ΦχL

[∫ x

−∞
|u|2dx

]
Ψxxdx

−2γIm
∫

R
vχL

[∫ x

−∞
(uΦ+ Φv)dx

]
Ψxxdx ≤ C + η‖Ψxx‖2.

Thus, d
dt‖Ψx‖

2 + α‖Ψx‖2 ≤ C, by Gronwall inequality

‖Ψx‖2 ≤ C

α
(1− e−αt), t ≥ 0. (3.15)

48 Advances in Analysis, Vol. 1, No. 1, July 2016

AAN Copyright © 2016 Isaac Scientific Publishing



Now multiplying (3.8) by Ψxxxx, taking the imaginary part, and integrating on R, we obtain

d

dt
‖Ψxx‖2 + 2η‖Ψxxx‖2 + 2α‖Ψxx‖2 = 2Im

∫
R

((|u|2 + |v|2)Ψ)xΨxxxdx

+2Im
∫

R
(uvΨ)xΨxxxdx+ 2γIm

∫
R

(Ψ
[∫ x

−∞
|u|2dx

]
)xΨxxxdx

+2γIm
∫

R
(v
[∫ x

−∞
(uΨ + Ψv)dx

]
)xΨxxxdx+ 2Im

∫
R

((|u|2 + |v|2)χLΦ)xΨxxxdx

+2γIm
∫

R
(ΦχL

[∫ x

−∞
|u|2dx

]
)xΨxxxdx+ 2Im

∫
R

(uvχLΦ)xΨxxxdx

+2γIm
∫

R
(vχL

[∫ x

−∞
(uΦ+ Φv)dx

]
)xΨxxxdx ≤ C + η‖Ψxxx‖2.

Thus, d
dt‖Ψxx‖

2 + α‖Ψxx‖2 ≤ C, by Gronwall inequality

‖Ψxx‖2 ≤ C

α
(1− e−αt), t ≥ 0. (3.16)

Thus the proof of Lemma 3.6 is completed.

Lemma 3.7 There exists a constant k3 > 0 such that, for any η ∈ (0, 1),

‖xΨ‖H1(R) ≤ k3, t ≥ 0. (3.17)

Proof. Multiplying (3.8) by x2Ψ , taking the imaginary part, and integrating on R, we obtain

d

dt
‖xΨ‖2 + 2η‖Ψx‖2 + 2α‖xΨ‖2 = −2γIm

∫
R
v

[∫ x

−∞
(uΨ + Ψv)dx

]
x2Ψdx

−2Im
∫

R
uvx2Ψ

2
dx− 2Im

∫
R

(|u|2 + |v|2)χLΦx2Ψdx− 2Im
∫

R
uvχLΦx

2Ψdx

−2γIm
∫

R
ΦχL

[∫ x

−∞
|u|2dx

]
x2Ψdx− 2γIm

∫
R
vχL

[∫ x

−∞
(uΦ+ Φv)dx

]
x2Ψdx. (3.18)

Majorizing each term of the right hand side of (3.18), we have d
dt‖xΨ‖

2 ≤ C‖xΨ‖2 + C. By Gronwall
inequality, we get ‖xΨ‖2 ≤ C. Now let us differentiate (3.8) with respect to x, this leads to

iΨxt + (1− iη)Ψxxx + iαΨx + (|u|2 + |v|2)xΨ + (|u|2 + |v|2)Ψx + (uv)xΨ

+(uv)Ψx + γΨ |u|2 + γΨx

∫ x

−∞
|u|2dx+ γv(uΨ + Ψv) + γvx

∫ x

−∞
(uΨ + Ψv)dx

+[(|u|2 + |v|2)χLΦ]x + [uvχLΦ]x + γ(ΦχL)x
∫ x

−∞
|u|2dx+ γΦχL|u|2

+γvχL(uΦ+ Φv) + γ(vχL)x
∫ x

−∞
(uΦ+ Φv)dx = 0, t > 0, x ∈ R. (3.19)
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Multiplying (3.19) by x2Ψx, taking the imaginary part, and integrating on R, we obtain

d

dt
‖xΨx‖2 + 2η‖xΨxx‖2 + 2α‖xΨx‖2 = −2Im

∫
R
x2(|u|2 + |v|2)ΨΨxdx

−2Im
∫

R
x2(uv)xΨΨxdx− 2Im

∫
R
x2(uv)Ψ2

xdx− 2γIm
∫

R
x2|u|2ΨΨxdx

−2γIm
∫

R
x2(uΨ + Ψv)Ψxdx− 2γIm

∫
R
x2vx

[∫ x

−∞
(uΨ + Ψv)dx

]
Ψxdx

−2Im
∫

R
x2[(|u|2 + |v|2)χLΦ]xΨxdx− 2Im

∫
R
x2[uvχLΦ]xΨxdx

−2γIm
∫

R
x2ΦχL|u|2Ψxdx− 2γIm

∫
R
x2(ΦχL)x

[∫ x

−∞
|u|2dx

]
Ψxdx

−2γIm
∫

R
x2vχL(uΦ+ Φv)Ψxdx− 2γIm

∫
R
x2(vχL)x

[∫ x

−∞
(uΦ+ Φv)dx

]
Ψxdx. (3.20)

Majorizing each term of the right hand side of (3.20), we have d
dt‖xΨx‖

2 ≤ C‖xΨx‖2 + C. By Gronwall
inequality, we get ‖xΨx‖2 ≤ C. Thus the proof of Lemma 3.7 is completed.

Proof of Lemma 3.4. From (3.10), for all δ ∈ (0, 1
4 ), let t large enough such that ‖Φ‖H1(R) ≤

δ
8‖w(0)‖H1(R). Let

B0 =
{
Ψ
∣∣ ‖Ψ‖2

H2(R) + ‖xΨx‖2 ≤ k2
2 + k2

3 = K2
}
. (3.21)

Note that the left-hand side of the inequality in (3.21) can be written in the following form:

‖Ψ‖2
H2(R) + ‖xΨx‖2 = (LΨ, Ψ), L = −Ψxx + Ψ + x2Ψ.

Thanks to Lemma 3.5, B0 is compact subset in H1(R), hence the operator L−1 is compact. Since the
left-hand side of (3.21) is a quadratic function of Ψ , it defines an ellipsoid B0 in H1(R), and since it is
compact, it may be written as B0 = {Ψ |

∞∑
j=1

(Ψ, ej)2λj ≤ K2}, where {ej}∞j=1 is an complete orthonormal

basis in H1(R), ej is an eigenfunction of operator L, λj is eigenvalue of the operator L corresponding
with ej , 0 < λ1 < λ2 < · · · < λm < · · · → +∞, as j → +∞. Let N be so large that λN ≥ 16K2

δ2‖w(0)‖2 . Let
EN = {e1, e2, · · · , eN}, PN : H1(R)→ EN , the orthoprojector onto EN . Therefore, if Ψ ∈ B0, then

‖(I − PN )Ψ‖2 =
∞∑

j=N+1
(Ψ, ej)2 ≤ K2

λN
≤ δ2

16K2 ‖w(0)‖2.

Thus

‖(I − PN )w‖2 ≤ ‖(I − PN )Φ‖2 + ‖(I − PN )Ψ‖2 ≤ ‖Φ‖2 + ‖(I − PN )Ψ‖2 ≤ 3δ
8 ‖w(0)‖2.

Therefore, if ‖(I − PN )w‖ ≤ ‖PNw‖, ‖w‖ ≤ 2‖(I − PN )w‖ ≤ 3δ
4 ‖w(0)‖2 < δ‖w(0)‖2. Thus the proof of

Lemma 3.4 is completed.

4 Proof of Theorem 1.3

In this section, we shall prove the regularity of global attractor for the problems (1.1)-(1.2). To this end,
let u be the solution of (1.1)-(1.2) which also reads u(x) = 1

2π
∫

R û(ξ)eixξdξ. On one hand, for a given
level N , we denote by y the low frequency part of u as y(x) = 1

2π
∫
|ξ|≤N û(ξ)eixξdξ. We note that y is a

smooth function with respect to the x variable. On the other hand, we also define the high frequency
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part of u as z(x) = 1
2π
∫
|ξ|>N û(ξ)eixξdξ. We observe that the regularity of u with respect to x depends

on its high frequency part. By projecting (1.1) on the high modes, we see that z is the solution of the
non-autonomous partial differential equation

izt + zxx +Q
[
γ(y + z)(

∫ x

−∞
|y + z|2dx)

]
+Q

[
|y + z|2(y + z)

]
+ iαz = Qf, (4.1)

z(0) = Qu0 = z0, (4.2)

where Q denotes the orthogonal projector onto QH1 =
{
z ∈ H1(R) | z = 1

2π
∫
|ξ|>N û(ξ)eixξdξ

}
. Since

we are interested in the long time behavior of z(t), we may focus on z(t) for t ≥ t0, t0 being as in Lemma
2.2. Hence, for t ≥ t0, z is the solution of (4.1) with the following initial condition z(t0) = Qu(t0). We
also introduce Z: [t0,+∞)→ QH1 which is the solution of

iZt + Zxx +Q
[
γ(y + Z)

∫ x

−∞
|y + Z|2dx

]
+Q

[
|y + Z|2(y + Z)

]
+ iαZ = Qf, (4.3)

with Z(t0) = 0, here y = (I −Q)u is as above. The existence result for Z will be proven in the following
Lemma 4.1. Moreover, in Lemma 4.2, we shall prove that for a given N large enough, depending on α
and f , Z(t) exists for all t ≥ t0 and takes its values in QH2. Thus we split z into two parts as follows
z = Z + (z−Z), here Z is smooth, and z−Z converges towards 0 in H1(R) when t→ +∞. For the sake
of convenience, in this section, we assume that t0 = 0, that is

Z(0) = 0. (4.4)

Hence u(t) remains in the absorbing ball in H1(R) whose radius is ρ as in (2.4). We state and prove the
following result:

Lemma 4.1 There exists N0 that depends on the data of the equation α and f , such that for a given
N ≥ N0, Z(t) ∈ Cb((0,+∞), QH1) is the solution of (4.3)-(4.4). Moreover, we have

sup
t≥0
‖Z(t)‖H1(R) ≤ K1. (4.5)

Proof. Let N be fixed large enough, m > N and y(t) = (I −Q)u(t) as above. Assume that Zm(t) be
the solution in PmQH1 =

{
Zm

∣∣∣ Zm = 1
2π
∫
N<|ξ|<m û(ξ)eixξdξ

}
of the equation

iZmt + Zmxx + PmQ
[
γ(y + Zm)

∫ x

−∞
|y + Zm|2

]
+ PmQ

[
|y + Zm|2(y + Zm)

]
+ iαZm = PmQf, (4.6)

with Zm(0) = 0. This equation is a Galerkin approximation at order m of problem (4.3), we shall prove
the global existence of Zm and we obtain the existence of Z by letting m→∞. Due to Cauchy-Lipschitz
theorem, Zm exists in [0, Tm) and Zm ∈ PmQH1 for some Tm. Thus we only need to prove below a priori
estimates which show the fact Tm = +∞ and which allow us to let m go to infinity:

sup
t≥0
‖Zm(t)‖H1(R) ≤ K1. (4.7)

For the sake of convenience, we drop the superscript m and write Z = Zm, v = vm = y + Zm. To prove
(4.7), let us take the imaginary part of the scalar product of (4.6) with Z, and taking the real part of the
scalar product of (4.6) with −Zt − αZ − iγ(y + Z)

∫ x
−∞ |y + Z|2dx, we obtain

1
2
d

dt
J1(Z) + αJ1(Z) = J2(Z), (4.8)

where

J1(Z) = ‖Z‖2
H1(R) +

∫
R
Re
(
− 2Z|y|2y)− 1

2 |Z|
4 − 2|Z|2|y|2 − Z2

y2 − 2|Z|2Zy + 2Zf
)
dx,
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J2(Z) =
∫

R
Im
(
Zf − Z|y|2y − |Z|2Zy − Z2

y2 − 2|Z|2Zy
)
dx

+α
∫

R
Re
(1

2 |Z|
4 − Z|y|2y + |Z|2Zy + Zf

)
dx

−
∫

R
Re
(
|Z|2(|y|2)t + Z(|y|2y)t + Z

2
yyt + |Z|2Zyt

)
dx

+γ
∫

R
Im
(
Zx(y + Z)|y + Z|2 + (yxZx + yxf + Zf − yZ)

∫ x

−∞
|y + Z|2dx

)
dx.

We now majorize J1(Z).

J1(Z) ≥ ‖Z‖2
H1(R) − 2‖Z‖L4(R)‖y‖3

L4(R) − 3‖Z‖2
L4(R)‖y‖

2
L4(R)

−1
2‖Z‖

4
L4(R) − 2‖Z‖3

L4(R)‖y‖L4(R) − 2‖Z‖L4(R)‖f‖L 4
3 (R)

.

Due to Sobolev embedding H1(R) ⊂ L4(R) and to the fact that y = (I −Q)u, we have

‖y‖L4(R) ≤ C‖y‖H1(R) ≤ C‖u‖H1(R) ≤ Cρ,

where ρ is in (2.4). Thus we obtain

J1(Z) ≥ ‖Z‖2
H1(R) − ‖Z‖

4
L4(R) −K. (4.9)

We now majorize J2(Z). Firstly, we have∫
R
Im
(
Zf − Z|y|2y − |Z|2Zy − Z2

y2 − 2|Z|2Zy
)
dx

+α
∫

R
Re
(1

2 |Z|
4 − Z|y|2y + |Z|2Zy + Zf

)
dx

≤ (1 + α)‖Z‖L4(R)‖y‖3
L4(R) + ‖Z‖2

L4(R)‖y‖
2
L4(R) + α

2 ‖Z‖
4
L4(R)

+(3 + α)‖Z‖3
L4(R)‖y‖L4(R) + (1 + α)‖Z‖L4(R)‖f‖L 4

3 (R)

≤ α‖Z‖4
L4(R) +K.

Secondly, using the enhanced Poincaré inequality that holds on QH1, ‖Z‖L∞(R) ≤ C√
N
‖Z‖H1(R), we get

−
∫

R
Re
(
|Z|2(|y|2)t + Z(|y|2y)t + Z

2
yyt + |Z|2Zyt

)
dx

≤ C‖y‖L∞(R)‖Z‖L∞(R)‖Z‖H1(R) + C‖y‖H1(R)‖Z‖2
L∞(R)

+C‖y‖H1(R)‖y‖L∞(R)‖Z‖L∞(R) + C‖y‖2
L∞(R)‖Z‖H1(R)

+C‖Z‖2
L∞(R)‖Z‖H1(R)

≤ C√
N
‖Z‖2

H1(R) + α

4 ‖Z‖
2
H1(R) + C

N
‖Z‖3

H1(R) +K.

Lastly, we get easily the following four inequalities:

γ

∫
R
Im
(
Zx(y + Z)|y + Z|2

)
dx

≤ C‖Z‖H1(R) + C√
N
‖Z‖2

H1(R) + C

N
‖Z‖3

H1(R) + C

N
‖Z‖4

H1(R),

γ

∫
R
Im
(
yxZx

∫ x

−∞
|y + Z|2dx

)
dx

≤ |γ|‖yx‖‖Zx‖
(
‖y‖2

L∞(R) + 2‖y‖L∞(R)‖Z‖L∞(R) + ‖Z‖2
L∞(R)

)
≤ C‖Z‖H1(R) + C√

N
‖Z‖2

H1(R) + C

N
‖Z‖3

H1(R),
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γ

∫
R
Im
(

(y + Z)f
∫ x

−∞
|y + Z|2dx

)
dx

≤ |γ|
∫

R
(|y|3 + 3|y|2|Z|+ 3|y||Z|2 + |Z|3)|f |dx ≤ C‖Z‖3

H1(R) +K,

−γ
∫

R
Im
(
yZ

∫ x

−∞
|y + Z|2dx

)
dx ≤ C‖Z‖H1(R) + C‖Z‖2

H1(R) + C

N
‖Z‖3

H1(R).

From above inequalities we obtain

J2(Z) ≤ (α4 + K√
N

)‖Z‖2
H1(R) + α‖Z‖4

L4(R) + K ′

N
‖Z‖3

H1(R) +K ′′. (4.10)

Hence, by (4.8) and (4.10), we get

1
2
d

dt
J1(Z) + αJ1(Z) ≤ 3α

8 ‖Z‖
2
H1(R) + K√

N
‖Z‖2

H1(R) + K ′

N2 ‖Z‖
4
H1(R) +K ′′, (4.11)

where K, K ′, K ′′ are constants. Let us assume that

K√
N
≤ K√

N0
≤ α

8 , i.e. N0 ≥
64K2

α2 , (4.12)

then it follows from (4.9) and (4.10) that

d

dt
J1(Z) + αJ1(Z) ≤ K

N2 ‖Z‖
4
H1(R) +K ′. (4.13)

Integrating (4.13) for t between 0 and t (observing that J1(Z(0)) = J1(0) = 0), we have

J1(Z(t))eαt ≤ K

N2

∫ t

0
‖Z(s)‖4

H1(R)e
αsds+ K ′eαt

α
. (4.14)

Thus we deduce easily from (4.9) that

‖Z‖2
H1 ≤

C

N3 ‖Z‖
4
H1(R) + K

N2

∫ t

0
‖Z(s)‖4

H1(R)e
α(s−t)ds+K ′. (4.15)

Now let us introduce ζ(t) = sup
[0,t]
‖Z(s)‖2

H1(R), which is a continuous function of t satisfying ζ(0) = 0.

By (4.15), ζ(t) satisfies ζ(t) ≤ K
N2 ζ

2(t) + K ′. Set φ(ζ) = ζ − K
N2 ζ

2 −K ′, and assume that φ(2K) > 0,
namely 4KK′

N2 ≤ 4KK′
N2

0
< 1, i.e., N0 ≥ 2

√
KK ′. Since φ(ζ(0)) = φ(0) < 0 and t → ζ(t) is a continuous

nonnegative function of t, then ζ(t) remains bounded in [0, α1], where α1 is the first root of φ. Thus we
have ζ(t) = sup

[0,t]
‖Z(s)‖2

H1(R) ≤ 2K ′, which is independent of m, the proof of Lemma 4.1 is completed.

Lemma 4.2 Let N0 be as in Lemma 4.1. Let N ≥ N0 be fixed. There exists K(N) that depends on N ,
such that the solution Z of (4.3)-(4.4) satisfies

sup
t≥0
‖Z(t)‖H2(R) ≤ K(N). (4.16)

Proof. Let us take the imaginary part of the scalar product of (4.6) with Zmxx. Here for the sake of
convenience, we drop the superscript m and write Z = Zm, v = vm = y + Zm. This leads to

1
2
d

dt
‖Zx‖2 + α‖Zx‖2 =

∫
R
Im
(
GZx − v2Z

2
x − γ|v|2ZZx

)
dx, (4.17)

where

G = PmQ
[
fx − (v)2yx − 2|v|2yx − γ(

∫ x

−∞
|v|2dx)yx − γ|v|2y

]
. (4.18)
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Taking the real part of the scalar product of (4.6) with −Zxxt − αZxx − iγZx
∫ x
−∞ |v|

2dx, we obtain

1
2
d

dt

{
‖Zxx‖2 +

∫
R
Re
(

2GZx − Z
2
xv

2 − 2|Zx|2|v|2 − 2γ|v|2ZZx
)
dx

}
+α

{
‖Zxx‖2 +

∫
R
Re
(
GZx − Z

2
xv

2 − 2|Zx|2|v|2 − γ|v|2ZZx
)
dx

}
=
∫

R
Re
(
GtZx − vvtZ

2
x − 2|Zx|2vvt − γ|v|2ZtZx

)
dx

−2γ
∫

R
Re(vvt)Re(ZZx)dx− γ

∫
R
Im
(
|v|2ZxxZx

)
dx

+γ
∫

R
Im
((
GZx − Z2

xv
2 − γ|v|2ZZx

) ∫ x

−∞
|v|2dx

)
dx. (4.19)

It follows from (4.17)-(4.19) that

1
2
d

dt
J3(Zx) + αJ3(Zx) = J4(Zx), (4.20)

where

J3(Zx) = ‖Zx‖2
H1(R) +

∫
R
Re
(

2GZx − Z
2
xv

2 − 2|Zx|2|v|2 − 2γ|v|2ZZx
)
dx,

≥ 3
4‖Zx‖

2
H1(R) − 2‖G‖H−1(R)‖Zx‖H1(R) − 2|γ|

∫
R
|v|2|Z||Zx|dx

≥ 1
2‖Zx‖

2
H1(R) − C‖G‖

2
H−1(R). (4.21)

J4(Zx) = −γ
∫

R
Im
(
Z2
xv

2
∫ x

−∞
|v|2dx

)
dx− γ2

∫
R
Im
(
|v|2ZZx

∫ x

−∞
|v|2dx

)
dx

−γ
∫

R
Im(|v|2ZxxZx)dx− γ

∫
R
Re(|v|2ZtZx)dx−

∫
R
Im(Z2

xv
2)dx

−γ
∫

R
αRe(|v|2ZZx) + Im(|v|2ZZx)dx+

∫
R
Re(−vvtZ

2
x − 2|Zx|2vvt)dx

−2γ
∫

R
Re(vvt)Re(ZZx)dx+ γ

∫
R
Im
(
GZx

∫ x

−∞
|v|2dx

)
dx

+
∫

R
αRe(GZx) + Im(GZx)dx+

∫
R
Re(GtZx)dx.

≤ CK4
0√
N
‖Zx‖2

H1(R) + CK2
0√
N
‖Zx‖2

H1(R) + CK2
0√
N
‖G‖H−1(R)‖Zx‖H1(R)

+(α+ 1)‖G‖H−1(R)‖Zx‖H1(R) + ‖Gt‖H−1(R)‖Zx‖H1(R)

≤
(
CK2

0√
N

+ CK4
0√
N

+ α

8

)
‖Zx‖2

H1(R) + C
(
‖Gt‖2

H−1(R) + ‖G‖2
H−1(R)

)
. (4.22)

Assuming that N ≥ N2 is large enough to satisfy CK2
0√
N

+ CK4
0√
N
≤ CK2

0√
N2

+ CK4
0√

N2
≤ α

8 , i.e. N2 ≥ 64C2K4
0 (1+K2

0 )2

α ,
we get

1
2
d

dt
J3(Zx) + α

2 J3(Zx) ≤ C
(
‖G‖2

H−1(R) + ‖Gt‖H−1(R)

)
. (4.23)

By Gronwall lemma and by J3(Zx(0)) = J3(0) = 0, we obtain the following inequality

sup
t≥0
‖Zmx (t)‖H1(R) ≤

C

α
sup
t≥0

(‖G(t)‖2
H−1(R) + ‖Gt(t)‖H−1(R)). (4.24)
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Now we estimate the right hand side of (4.24). Applying the following inverse inequality ‖yx‖Hk(R) ≤
(2πN)k−1‖y‖H1(R), we have the following inequality

sup
t≥0
‖G‖H1(R) ≤ sup

t≥0

[
‖fx‖H1(R) + C‖yx‖H1(R)‖vm‖2

H1 + C‖y‖H1(R)‖vm‖2
H1(R)

]
≤ sup

t≥0

[
‖fx‖H1(R) + C‖y‖H1(R)‖vm‖2

H1(R)

]
≤ C.

Hence we have bound G in C1
b ((0,+∞), H−1(R)). It remains to consider its time derivative. The derivative

of G reads:

Gt = PmQ
[
− 4Re(vmvmt )yx − 2|vm|2yxt − (vm)2yxt − 2vmvmt yx − γ|vm|2yt

−2γ(
∫ x

−∞
Re(vmvmt )dx)yx − γ(

∫ x

−∞
|vm|2dx)yxt − 2γRe(vmvmt )y

]
.

Firstly, let φ be a test function in H1(R) that satisfies ‖φ‖H1(R) = 1, we have the following two inequalities

sup
‖φ‖H1(R)=1

(−4Re(vmvmt )yx, φ)L2 ≤ sup
‖φ‖H1(R)=1

4‖vmt ‖H−1(R)‖|vm||yx||φ|‖H1(R) ≤ K(N),

sup
‖φ‖H1(R)=1

(−2γ
∫ x

−∞
Re(vmvmt )dsyx, φ)L2(R) ≤ K(N).

On the other hand, applying the inverse inequality ‖yxt‖H−1(R) ≤ (2πN)2‖yt‖H−1(R), we get the following
two inequalities

sup
‖φ‖H1(R)=1

(−γ
∫ x

−∞
|vm|2dxyxt, φ)L2(R) ≤ sup

‖φ‖H1(R)=1
|γ|‖|vm|2|φ|‖H1‖yxt‖H−1 ≤ K(N),

sup
‖φ‖H1(R)=1

(−2|vm|2yxt, φ)L2(R) ≤ K(N).

Similarly, we get the following four inequalities

sup
‖φ‖H1(R)=1

(−(vm)2yxt, φ)L2(R) ≤ K(N), sup
‖φ‖H1(R)=1

(−2vmvmt yx, φ)L2(R) ≤ K(N),

sup
‖φ‖H1(R)=1

(−2γRe(vmvmt )y, φ)L2(R) ≤ K(N), sup
‖φ‖H1(R)=1

(−γ|vm|2yt, φ)L2(R) ≤ K(N).

Since the projector Q is uniformly bounded from H−1(R) into H−1(R), then we obtain that Gt is
bounded in Cb((0,+∞), H−1(R)).

By above inequalities and (4.24), we get (4.16), hence the proof of Lemma 4.2 is completed.
Now we aim to compare z with Z for large time. Let z = Qu that solves (4.1) and let Z solve (4.3),

then we get the following result:

Lemma 4.3 Let N0 be as in Lemma 4.1. For N ≥ N0, we have

‖Z(t)− z(t)‖H1(R) ≤ C0e
−αt, (4.25)

where C0 depends on ‖u0‖H1(R).

Proof. Let v = y + Z and w = Z − z = v − u. Thus w satisfies

iwt + wxx + iαw + γQ
[
w

∫ x

−∞
|v|2dx+ u

∫ x

−∞
(uw + vw)dx

]
+Q

[
(|u|2 + |v|2)w + uvw

]
= 0. (4.26)

Multiplying (4.26) by w, taking the imaginary part, and multiplying (4.26) by
−wt − αw − iγQ[w

∫ x
−∞ |v|

2dx+ u
∫ x
−∞(uw + vw)dx], taking the real part, we obtain

1
2
d

dt
J5(w) + αJ5(w) = J6(w), (4.27)
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where

J5(w) = ‖w‖2
H1(R) −

∫
R

(|u|2 + |v|2)|w|2 + Re(uvw2)dx. (4.28)

J6(w) = −
∫

R
Im
(
uvw2 − γuw

∫ x

−∞
(uw + vw)dx

)
dx

+γ
∫

R

[
α|w|2 − Im(uvw2)

] ∫ x

−∞
|v|2dxdx

+γα
∫

R
Re
(

(uw − uw)
∫ x

−∞
(uw + vw)dx

)
dx

−1
2

∫
R

(
(|u|2 + |v|2)t|w|2 + Re((uv)tw2)

)
dx

−γ
∫

R
Im
(
wxw|v|2 + wxu

2w + wxuvw
)
dx

−γ2
∫

R
Im
(

(uw + uw)
∫ x

−∞
(uw + vw)dx

∫ x

−∞
|v|2dx

)
dx

−γ
∫

R
Im
((
|u|2wu+ |v|2wu+ |u|2vw + wxux

) ∫ x

−∞
(uw + vw)dx

)
dx.

−γ2
∫

R
Im
(
|u|2
[ ∫ x

−∞
(uw + vw)dx

]2)
dx. (4.29)

Since Z satisfies (4.4) and since ‖u‖H1 ≤M1, we have

J5(w) ≥ ‖w‖2
H1(R)(1−

C(M2
1 +K2

1 )
N2 ).

Hence if N0 is large enough as required by Lemma 4.1, we can conclude on the coerciveness of J5 on H1,
that is,

J5(w) ≥ 1
2‖w‖

2
H1(R). (4.30)

Next we majorize the right hand side of (4.29). Firstly, we have

−
∫

R
Im
(
uvw2 − γuw

∫ x

−∞
(uw + vw)dx

)
dx

≤ ‖w‖2
L∞(R)(‖u‖‖v‖+ γ‖u‖2 + γ‖u‖‖v‖) ≤ K

2
√
N
‖w‖2

H1(R).

Majorize similarly the rest terms of the right hand side of (4.29), we have

J6(w) ≤ K

2
√
N
‖w‖2

H1(R). (4.31)

Thus we easily imply from (4.27) and (4.31) that

1
2
d

dt
J5(w) + αJ5(w) ≤ K√

N
‖w‖2

H1(R) ≤
2K√
N
J5(w). (4.32)

Since 2K√
N
≤ α

2 (as in Lemma 4.1), the classical Gronwall lemma leads to

J5(w(t)) ≤ J5(w(0))e−αt. (4.33)

By using w(0) = z0 and the coerciveness of J on QH1, we easily complete the proof of (4.28). The proof
of Lemma 4.3 is completed.
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Proof of Theorem 1.3. Lemma 4.2 implies that Aγ is a bounded subset of H2(R). We shall prove the
compactness. We introduce an energy equation for u which reads

J7(Sγ(t)u0) = J7(u0)e−2αt +
∫ t

0
e−2α(t−s)J8(Sγ(s)u0)ds (4.34)

where

J7(u) = ‖uxx‖2 −
∫

R
Re(fuxx)dx−

∫
R

[
|u|2|ux|2 + 2(Re(uxu))2

]
dx

−γ
∫

R

[
|ux|2(

∫ x

−∞
|u|2dx) + 2|u|2Re(uxu)

]
dx,

J8(u) = 2α‖uxx‖2 − 2α
∫

R
Re(fuxx)dx− 2Reα

∫
R
ux(|u|2u)xdx

−2Reα
∫

R
ux(u

∫ x

∞
|u|2dx)xdx,+γ

∫
R

[
|ux|2

∫ x

∞
(|u|2)tdx

+2(|u|2)tRe(uxu) + 2|u|2Re(uxut)
]
dx

+
∫

R

[
|ux|2(|u|2)t + 4Re(uxu)Re(uxut)

]
dx.

Let xj be a sequence in Aγ . Since Aγ is bounded in H2(R), there exists a subsequence xj′ that weakly
converges towards ξ in H2(R), and strongly in H1(R), because Aγ is compact in H1(R). For fixed
nonnegative t, let u0 = S(−t)xj′ , we have

lim sup
j′→+∞

J7(xj′) ≤ J7(ξ)− J7(S(−t)ξ)e−αt + lim sup
j′→+∞

J7(S(−t)xj′)e−αt.

As J7 is bounded on Aγ , then when t→∞, lim sup
j′→+∞

‖xj′‖H2(R) ≤ ‖ξ‖H2(R). We then obtain the result.

5 Proof of Theorem 1.4

In this section our main goal is to prove the Theorem 1.4. It is equivalent to proving the following
statement: let y = Pu1(t) = Pu2(t), P = PN , such that

‖y‖H1(R) ≤ ρ1, ‖yt‖H−1(R) ≤ ρ2, t ∈ R. (5.1)

Then there exists only one solution z = z(t) ∈ Cb(R, QH1) of the nonlinear autonomous equation

izt + zxx +Q
[
γ(y + z)(

∫ x

−∞
|y + z|2dx)

]
+Q

[
|y + z|2(y + z)

]
+ iαz = Qf, (5.2)

lim sup
t→−∞

‖z‖H1(R) < +∞. (5.3)

Let z1(t) and z2(t) be two solutions of (5.2)-(5.3), we now follow step by step the proof of Lemma 4.3.
We set v1 = y + z1 and v2 = y + z2, w = z2 − z1 = v2 − v1. Then w satisfies

iwt + wxx + γQ
[
w

∫ x

−∞
|v2|2dx+ v1

∫ x

−∞
(v2w + v1w)dx

]
+Q
[
(|v1|2 + |v2|2)w + v1v2w

]
+ iαw = 0. (5.4)

Multiplying (5.4) by w, taking the imaginary part, and multiplying (5.4) by
−wt − αw − iγQ[w

∫ x
−∞ |v|

2dx+ u
∫ x
−∞(uw + vw)dx], taking the real part, we obtain, as in (4.35),

1
2
d

dt
J9(w) + αJ9(w) ≤ 0, (5.5)
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where

J9(w) = ‖w‖2
H1(R) −

∫
R

(|v1|2 + |v2|2)|w|2 + Re(v1v2w
2)dx ≥ 1

2‖w‖
2
H1(R), (5.6)

provided N ≥ N0. Integrating (5.5) between t′ and t > t′, and also using (5.6), we have

‖w‖2
H1(R) ≤ J9(w(t′))e−α(t−t′) for t ≥ t′. (5.7)

We now let t′ go to −∞. Observing that J9(w(t′)) remains bounded, thus we have proved the Theorem
1.4.

6 Proof of Theorem 1.5

In this section our main goal is to prove the Theorem 1.5. Assume that u, v are the solutions of the
nonlocal and usual Schrödinger equations, respectively, with the same initial data u0(x), i.e., u = Sγ(t)u0,
v = S(t)u0. We denote also w = u− v, and hence w(0) = 0. Using the equations (1.1) and (1.3), we get

iwt + wxx + |u|2w + uvw + |v|2w + γu

∫ x

−∞
|u|2dx+ iαw = 0. (6.1)

Multiplying (6.1) by w, taking the imaginary part, we obtain

d

dt
‖w‖2 + 2α‖w‖2 = −2Im

∫
R
uvw2dx− 2γIm

∫
R
uw
[ ∫ x

−∞
|u|2dx

]
dx

≤ 2‖u‖L∞‖v‖L∞‖w‖2 + 2γ‖u‖3‖w‖ ≤ C1‖w‖2 + C2γ
2.

Thus, since w(0) = 0, we have

‖w(t)‖2 ≤ C2

C1
(eC1t − 1)γ2. (6.2)

Multiplying (6.1) by −wxx, taking the imaginary part, we obtain

1
2
d

dt
‖wx‖2 + α‖wx‖2 = −Im

∫
R

(|u|2 + |v|2)xwwxdx− Im
∫

R
(uv)xwwxdx

−Im
∫

R
uvw2

xdx− γIm
∫

R
uxwx

[ ∫ x

−∞
|u|2dx

]
dx

−γIm
∫

R
uwx|u|2dx ≤ C3‖wx‖2 + C4γ

2.

Then

‖wx(t)‖2 ≤ C4

C3
(eC3t − 1)γ2. (6.3)

By (6.2)-(6.3), we conclude that ‖w(t)‖2
H1(R) → 0 as γ → 0. This shows that the solution u of the nonlocal

Schrödinger equation (1.1) approaches the solution v of the usual Schrödinger equation (1.3). Moreover,
solution operator Sγ(t) has a uniform domain of attraction, i.e., H1(R), which is independent of γ. Thus
we have proved the Theorem 1.5.
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