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Abstract The article provides a survey of the absolute theory of general systems of (partial)
differential equations. The equations are relieved of all additional structures and subject to quite
arbitrary change of the variables. An abstract mathematical theory in the Bourbaki sense with
its own concepts and technical tools follows. In particular the external, internal, generalized and
higher–order symmetries and infinitesimal symmetries together with the E. Cartan’s prolongations,
various characteristics, the involutivity and the controllability structures are clarified in genuinely
coordinate–free terms without any use of the common jet mechanisms.
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1 Preface

We motivate the central concepts and informally describe the main task in order to give some impressions
on our subject, however, this is not a logical prerequisite for the text to follow.

1.1 The Higher–order Transformations (the Morphisms)

Let us recall the jet coordinates

xi, w
j
I (j = 1, . . . ,m; I = i1 · · · ir; i, i1, . . . , ir = 1, . . . , n; r = 0, 1, . . . ) (1)

where xi are independent variables, wj (empty I) dependent variables and wjI (nonempty I) correspond
to the derivatives

wjI = ∂wj

∂xI
= ∂rwj

∂xi1 · · · ∂xir
(I = i1 · · · ir).

Let us moreover introduce the equations

x̄i = Xi(··, xi′ , wj
′

I′ , ··), w̄
j = W j(··, xi′ , wj

′

I′ , ··) (i = 1, . . . , n; j = 1, . . . ,m) (2)

where Xi and W j are given functions of a finite number of variables (1). They are interpreted as the
transformation formulae: the functions

wj = wj(x1, . . . , xn); j = 1, . . . ,m;

are transformed into certain functions

w̄j = w̄j(x̄1, . . . , x̄n); j = 1, . . . ,m;

and this is made as follows. Denoting

Xi = Xi(··, xi′ ,
∂wj

′

∂xI′
(x1, . . . , xn), ··) = Xi(x1, . . . , xn) (i = 1, . . . , n),
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we suppose that

det
(
∂Xi′
∂xi

)
= det(DiXi′) 6= 0 (Di = ∂

∂xi
+
∑

wjIi
∂

∂wjI
).

Then the implicit system x̄i = Xi(x1, . . . , xn); i = 1, . . . , n; admits a solution xi = X̄i(x̄1, . . . , x̄n);
i = 1, . . . , n; and provides the desired result

w̄j = W j(··, X̄i,
∂wj

′

∂xI′
(X̄1, . . . , X̄n), ··) = w̄j(x̄1, . . . , x̄n) (j = 1, . . . ,m).

One can also obtain the transformation of the derivatives

w̄jI = ∂w̄j

∂x̄I
= W j

I (··, xi′ , wj
′

I′ , ··) (all j and I) (3)

which complete the equations (2). They satisfy the recurrence∑
W j
IiDiXi′ = Di′W

j
I (all i′, j, I) (4)

and we altogether speak of a morphism (2), (3). If there exists the inverse morphism

xi = X̄i(··, x̄i′ , w̄j
′

I′ , ··), w
j
I = W̄ j

I (··, x̄i′ , w̄j
′

I′ , ··), (5)

we speak of an automorphism (or: symmetry). The structure of the totality of all symmetries unexpectedly
manifests as an unheard–of mystery [1],[2]. Just the symmetries are important since they produce the
higher–order equivalences of differential equations.

1.2 Example: the Wave Construction

Assuming n = 1, we abbreviate

x = x1, x̄ = x̄1, w
j
r = wj1···1, w̄

j
r = w̄j1···1 (r terms).

Let V = V (x,w1
0, . . . , w

m
0 , x̄, w̄

1
0, . . . , w̄

m
0 ) be a given function.

Proposition [3],[4]. If the implicit system

V = DV = · · · = DmV = 0 (D = ∂

∂x
+
∑

wjr+1
∂

∂wjr
)

admits a solution

x̄ = X(x,w1
0, . . . , w

m
m), w̄j0 = wj0(x,w1

0, . . . , w
m
m) (j = 1, . . . ,m) (6)

such that DX 6= 0 and the implicit system

V = D̄V = · · · = D̄mV = 0 (D̄ = ∂

∂x̄
+
∑

w̄jr+1
∂

∂w̄jr
)

admits a solution

x = X̄(x̄, w̄1
0, . . . , w̄

m
m), wj0 = w̄j0(x̄, w̄1

0, . . . , w̄
m
m) (j = 1, . . . ,m) (7)

such that D̄X̄ 6= 0 then (6) and (7) are symmetric inverse of each other.

The Proposition can be extensively generalized for the case n > 1 and all the classical Lie contact
transformations are involved if m = 1. Except for this Lie’s favourable subcase, all such symmetries
destroy the finite–order jet spaces.
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1.3 The Infinitesimal Modification [5],[6],[7]

The ancient “linear approximation” of equations (2) and (3) reads

x̄i = xi + εzi(··, xi′ , wj
′

I′ , ··), w̄
j
I = wjI + εzjI(··, xi′ , w

j′

I′ , ··)

where ε is the famed “small parameter”. In the rigorous theory, let us instead introduce the vector field

Z =
∑

zi
∂

∂xi
+
∑

zjI
∂

∂wjI
(zjIi = Diz

j
I −

∑
wjIi′Di′zi) (8)

with the recurrence following from (4).

Warning. In contrast to actual convention, we speak of a variation and the common term the generalized
(or: higher–order, or: Lie–Ba̋cklund) infinitesimal transformation (briefly: the symmetry) is retained only
for the case when the vector field Z generates a true (local) Lie group of transformations

x̄i[t] = Xi(··, xi′ , wj
′

i′ , ··; t), w
j
I [t] = W j

I (··, xi′ , wj
′

i′ , ··; t) (−ε < t < ε)

depending on the group parameter t, that is, for the favourable case when the Lie system

∂Xi

∂t
= zi(··, Xi′ ,W

j′

i′ , ··),
∂W j

I

∂t
= zjI(··, Xi′ ,W

j′

i′ , ··) (Xi|t=0 = xi, W
j
I |t=0 = wjI)

admits a solution. While all variations are given by simple explicit formula (8), the totality of all
infinitesimal symmetries is unknown.

1.4 Example: Variations and Symmetries

We again suppose n = 1. The vector field

D = Z = ∂

∂x
+
∑

wjr+1
∂

∂wjr
(z1 = 1, zj1···1 = zjr = wjr+1 with r terms)

is clearly a variation but not a symmetry since the Lie system

∂X

∂t
= z1 = 1, ∂W

j
r

∂t
= W j

r+1 = DW j
r (X|t=0 = x,W j

r |t=0 = wjr)

for the corresponding Lie group is contradictory. On the contrary, the vector field

Z =
∑

w1
r+1

∂

∂wkr
(m ≥ 2; the sum over k = 2, . . . ,m and r = 0, 1, . . . )

generates the very simple “higher–order Lie group” of the morphisms

x̄[t] = x, w̄1
r [t] = w1

r , w̄
k
r [t] = wkr + tw1

r+1 (k = 2, . . . ,m; r = 0, 1, . . .).

This very simple group does not preserve many of the classical concepts, even the order of the differential
equations.

1.5 External Differential Equations [7]

Let us denote M(m,n) the space with coordinates (1) from now on. (This is the classical jet space
without any differential constraints.) Differential equations are traditionally interpreted as the subspace
M ⊂M(m,n) defined by certain equations

Di1 · · ·Dirf
k = 0 (k = 1, . . . ,K; i1, . . . , ir = 1, . . . , n; r = 0, 1, . . .) (9)
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where f1, . . . , fK are given functions of variables (1). Together with the “primary” equations f1 = · · · =
fK = 0, also all consequences (9) are taken into account. The compatibility is implicitly contained in the
definition.

Let us recall the morphisms. By using the more precise pull–back notation

m∗xi = x̄i,m∗wjI = w̄jI

in the equations (2) and (3), they may be interpreted as a mapping m : M(m,n) → M(m,n), the
morphism of the space M(m,n). Assuming moreover mM ⊂ M, then m is said to be the external
morphism of M (or: of differential equations (9)) and the external automorphism (or: external symmetry)
in the invertible case (5).

The infinitesimal concepts are analogous: if the vector field (8) is tangent to M (and therefore Z is
a vector field on M as well) then Z is called the external variation of M (or: of differential equations (9))
and if Z moreover generates a group, we have the external infinitesimal symmetry.

1.6 Internal Differential Equations [7]

The external morphism of M whose restriction to M is invertible is the internal symmetry. The external
variation Z of M which generates a Lie group on M is the internal infinitesimal symmetry. These internal
concepts are in fact independent of the localization M in the ambient space M(m,n). The reasons are as
follows.

Let Ω(m,n) be the module of all contact forms

ω =
∑

f jIω
j
I (finite sum, ωjI = dwjI −

∑
wjIidxi) (10)

on the space M(m,n). One can observe that the recurrence (3) is equivalent to the inclusion m∗Ω(m,n) ⊂
Ω(m,n). Analogously the recurrence in (8) is expressed by the inclusion LZΩ(m,n) ⊂ Ω(m,n) for the
Lie derivative.

Let Ω be the restriction of the module Ω(m,n) to the subspace M ⊂ M(m,n). The morphism m
restricted to M clearly satisfies m∗Ω ⊂ Ω. Analogously the variation Z restricted to M satisfies the
inclusion LZΩ ⊂ Ω. Therefore both concepts are characterized without the use of the ambient space
M(m,n). However more is true: even the module Ω itself can be characterized in abstract terms, we
speak of a diffiety Ω on M, see below.

Altogether we obtain the internal theory for the differential equations (9) not affected by the inclusion
into the ambient jet space M(m,n).

1.7 Example: the Internal Symmetry

Assuming n = 1, we introduce the subspace M ⊂M(m, 1) defined by the equations

Drwj2 = wjr+2 = 0 (j = 1, . . . ,m; r = 0, 1, . . .).

Then the morphism m : M(m, 1)→M(m, 1) where

m∗x = x̄ = x,m∗wjr = w̄jr = wjr + wjr+1 (j = 1, . . . ,m; r = 0, 1, . . .)

is clearly noninvertible but the restriction to M

m∗x = x,m∗wj0 = wj0 + wj1,m∗w
j
1 = wj1 (j = 1, . . . ,m)

is a symmetry. Analogously the vector field Z = D is a mere variation on M(m, 1) but generates the Lie
group

x̄[t] = x, w̄j0[t] = wj0 + twj1, w̄
j
1[t] = wj1 (j = 1, . . . ,m)

on the space M. So we have the internal but not the external symmetries.
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1.8 Use of the Pfaffian Equations

For instance, let us mention the equation

dz = pdx+ F (x, y, z, p)dy

where x, y, z, p may be regarded as the coordinates of the underlying space. The solutions z = z(x, y)
parametrized with x, y satisfy

∂z

∂y
= F (x, y, z, ∂z

∂x
).

However the same Pfaffian equation

dz̄ = −xdp+ F (x, y, z̄ + px, p)dy (z̄ = z − px)

admits the solutions z̄ = z̄(p, y) which satisfy

∂z̄

∂y
= F (−∂z̄

∂p
, y, z̄ − p∂z̄

∂p
, p).

And quite analogously, the same Pfaffian equation

dy = 1
F

dz − p

F
dx (F 6= 0, Fp 6= 0)

admits the solutions y = y(z, x) which satisfy

∂y

∂x
= −p∂y

∂z
(F (x, y, z, p) = 1/∂y

∂z
determines p = p(x, y, z, ∂y

∂z
)).

We conclude. A Pfaffian equation represents many formally quite dissimilar but in fact equivalent
differential equations according to the additional choice of the dependent and the independent variables.
It follows that a coordinate–free theory should be expressed in terms of the Pfaffian equations.

1.9 Towards the Diffieties

Let us finally recall the subspace i : M ⊂ M(m,n) in the more precise pull–back notation. Then the
module Ω = i∗Ω(m,n) is interpreted as the restriction of the module of all contact forms to the subspace
M of the jet space M(m,n). The definition equations (9) imply that vector fields D1, . . . , Dn are tangent
to the subspace M and therefore may be regarded as vector fields on M as well. They satisfy the crucial
identity

LDi′ω
j
I = LDi′ (dw

j
I −

∑
wjIidxi) = dwjIi′ −

∑
wjIii′dxi = ωjIi′

which is clearly true even for the restrictions i∗ωjI of the forms ωjI to the space M. Let Ω(m,n)l ⊂ Ω(m,n)
be the submodule of all contact forms of the order l at most, hence |I| = r ≤ l in all summands (9).
Obviously

Ω(m,n)l +
∑
LDi′Ω(m,n)l = Ω(m,n)l+1 (all l) (11)

and this property is true even for the restrictions to M, i.e., for the submodules

Ωl = i∗Ω(m,n)l ⊂ i∗Ω(m,n) = Ω. (12)

We have in fact discovered the crucial property of the diffieties Ω, see below.

We conclude. Differential equations should be represented by the Pfaffian system ω = 0 (ω ∈ Ω) on
the space M where the modules Ω are described in abstract terms (the internal theory) by using only the
property (12). Then the actual choice of the dependent and the independent variables is irrelevant (the
absolute approach) in the sense that the quite general formulae (3) are admitted.
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2 Fundamental Concepts

We deal with smooth and local category of manifolds and mappings. Our notational convention for
a mapping m : M→ M̄ of manifolds allows the definition domain to be a proper open subset of M. Then
the parade of the primary concepts denoted by (I)–(VI) looks as follows.

(I) On the manifolds [5]

Besides the occasional use of the common finite–dimensional spaces, we mainly deal with manifolds M
modelled on R∞, i.e., there are coordinates hj : M→ R (j = 1, 2, . . .) such that the ring F (= F(M), the
abbreviation whenever possible) of admissible functions f : M→ R involves just the (smooth) composite
functions f = F (h1, . . . , hm(f)). Then the F–module Φ (= Φ(M)) of differential forms ϕ =

∑
f jdgj

(finite sum with f j , gj ∈ F) and the F–module T (= T (M)) of vector fields Z on the space M make
a good sense. It should be noted that the vector fields are regarded as F–linear functions Z : Φ → F
where

df(Z) = Zf, ϕ(Z) = Zcϕ =
∑

f jZgj

and if ϕ1, ϕ2, . . . is a basis of module Φ, we denote

Z =
∑

zj
∂

∂ϕj
(infinite series, arbitrary zj = ϕj(Z) ∈ F)

with the common abbreviation ∂/∂f = ∂/∂df. The familiar rules like

LZf = Zf, LZϕ = Zcdϕ+ dϕ(Z), LZX = [Z,X], L[X,Y ] = LXLY − LY LX

for the Lie derivative and the Lie bracket do not need any comment.
Let n : N → M be a mapping of manifolds. If an appropriate part of the family of functions

n∗h1,n∗h2, . . . can be taken for the coordinates on N, then n is called an inclusion of the submanifold
N into the space M. (Since n is injective, we occasionally identify N = nN ⊂ M with the subset of
M.) Analogously n is called a projection of N on the factorspace M if the family n∗h1,n∗h2, . . . can be
completed by some additional functions to the coordinates on N. (Since n∗ is injective, we occasionally
abbreviate f = n∗f, ϕ = n∗ϕ.) In order to delete singularities, we tacitly suppose the existence of F–bases
in all F–modules to appear (unless otherwise stated). We moreover admit the localization at the points
P ∈M in the sense that the F–basis of F–module turns into the R–basis of R–module after the evaluation
P [8]. Alternatively: certain algebraical arrangements at a given point P ∈ M are tacitly applied in
a neighbourhood of P as well and this is possible on open subsets of “generic points” of M.

(II) On the diffieties [5],[8]

For every submodule Ω ⊂ Φ, let H(Ω) ⊂ T be the submodule of all vector fields Z such that Ω(Z) = 0.
A submodule Ω ⊂ Φ is called flat (or: satisfying the Frobenius condition) if any of the equivalent
requirements

dΩ ∼= 0 (mod Ω), LHΩ ⊂ Ω, [H,H] ⊂ H (H = H(Ω)) (13)

is satisfied. The finite–dimensional flat submodules Ω ⊂ Φ are simple: the Frobenius theorem can be
applied and they admit a basis consisting of total differentials. We are however interested just in the
infinite–dimensional case.

Definition 2.1. A finite–codimensional submodule Ω ⊂ Φ is called a diffiety if there exists a good
filtration Ω∗ : Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω = ∪Ωl with the finite–dimensional submodules Ωl ⊂ Ω (l = 0, 1, . . .)
such that

LHΩl ⊂ Ωl+1 (all l), Ωl + LHΩl = Ωl+1 (l large enough). (14)

A pre–diffiety need not satisfy the codimensionality requirement.

We deal only with the diffieties unless otherwise stated. The pre–diffieties will appear later on and
will be reduced to the common diffieties.
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Definition 2.2. Denoting n (= n(Ω)) = dimΦ/Ω = dimH, functions x1, . . . , xn are called independent
variables of diffiety Ω if the differentials dx1, . . . ,dxn are linearly independent modΩ. Then the total
derivatives D1, . . . , Dn ∈ H defined by

Dixi = 1, Di′xi = 0, Ω(Di) = 0 (i, i′ = 1, . . . , n; i 6= i′)

constitute a basis of module H and the contact forms

ω{f} = df −
∑

Difdxi (f ∈ F)

generate the diffiety Ω.

The link to the classical approach can be succinctly described as follows.

Let us consider differential equations i : M ⊂ M(m,n) in the sense (9). It was already clarified in
Preface 1.9 that the restriction Ω = i∗Ω(m,n) of the module Ω(m,n) to the space M is a diffiety with
the terms Ωl = i∗Ω(m,n)l of the good filtration. Let us conversely start with a diffiety Ω. Due to (14),
there exist generators

LDi1
· · · LDir

ωk (k = 1, . . . ,K; i1, . . . , ir = 1, . . . , n; r = 0, 1, . . . )

of module Ω. Denoting ωk =
∑
akjdhj , the Pfaffian system ω = 0 (ω ∈ Ω) clearly reads

∑
fkj
∂hj

∂xi
= 0, Di1

∑
fkj
∂hj

∂xi
= 0, Di1Di2

∑
fkj
∂hj

∂xi
= 0, . . .

which is a classical (infinitely prolonged) system of differential equations for a finite number of functions
hj = hj(x1, . . . , xn) occuring in the forms ω1, . . . , ωK .

We conclude. A diffiety supplied with a fixed choice of the dependent and the independent variables is
the same as an infinitely prolonged system of differential equations.

(III) On the commutative algebra [5],[7],[8],[9],[10]

Conditions (14) simplify if the original filtration Ω∗ is replaced with the gradation

GradΩ∗ =M =M0 ⊕M1 ⊕ · · · (Ml = Ωl/Ωl−1, Ω−1 = 0).

Then the Lie derivative
LD : Ωl → Ωl+1 (D ∈ H(Ω))

turns into the F–linear mapping D :M→M such that

D[ω] = [LDω] ∈Ml+1 (ω ∈ Ωl, [ω] ∈Ml, D ∈ H)

where the square brackets denote the factorization. But more is true. Let

A (= A(H)) = A0 ⊕A1 ⊕ · · · (A0 = F , A1 = H,A2 = H�H, . . .)

be the algebra of homogeneous polynomials over H. We obtain even the A–module structure onM. For
instance

Di1 · · ·Dir [ω] = [LDi1
· · · LDir

ω] ∈Ml+r (ω ∈ Ωr, Di1 · · ·Dir ∈ Ar),

Di1 · · ·Dir [ω{f}] = [ω{Di1 · · ·Dirf}].

Warning. The algebraical calculations with the F–module are performed at a fixed point of M. So we
deal with “smooth families” of R–modules. It follows that the classical algebra can be applied.
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In particular we recall the Hilbert polynomial

dimMl = eν

(
l

ν

)
+ · · ·+ e0

(
l

0

)
(l large enough, eν 6= 0)

with integer coefficients, alternatively

dimΩl = eν

(
l + 1
ν + 1

)
+ · · ·+ e−1

(
l + 1

0

)
(l large enough, eν 6= 0).

Then the degree ν (= ν(Ω)) and the integer µ (= µ(Ω)) = eν > 0 do not depend on the choice of the
filtration Ω∗.

Definition 2.3. We claim that the solution of diffiety Ω depends on µ(Ω) functions of ν(Ω) + 1 variables.
Diffiety Ω is overdetermined, determined, or underdetermined according to whether ν + 1 < n− 1, ν + 1 =
n− 1, or ν + 1 > n− 1, respectively.

One can observe that we have intentionally not yet introduced the concept of a solution of diffiety Ω.
Definition 2.3 therefore designates a more formal property of diffiety Ω, however, it is in full accordance
with quite opposite approach [11],[12],[13],[14],[15],[16] in the theory of exterior differential systems.

Remark. The above reasonings make sense even for the much easier case of the finite–dimensional
underlying space M which need not be separately discussed here. Let us only recall the familiar Frobenius
theorem which ensures that then the diffiety Ω ⊂ Φ(M) has a basis df1, . . . , dfµ and the solution depends
on µ = dimΩ = e−1 parameters. We formally put ν (= ν(Ω)) = −1.

(IV) On the symmetries [5],[7]

Admissible mappings m : M → M̄ between manifolds satisfy m∗F(M̄) ⊂ F(M) whence m∗Φ(M̄) ⊂
Φ(M).

Definition 2.4. Let Ω ⊂ Φ(M) and Ω̄ ⊂ Φ(M̄) be diffieties. Then the mapping m : M → M̄ is said
to be a morphism of diffieties if m∗Ω̄ ⊂ Ω. Invertible morphisms with n(Ω) = n̄(Ω) are isomorphisms
and then m∗Ω̄ = Ω. Assuming M = M̄ and Ω = Ω̄, invertible morphisms are called symmetries (or:
automorphisms).

Three subcases of symmetries can be informally mentioned as follows. First, if a given filtration
is preserved (Figure 1a). Second, if an unknown filtration is preserved (Figure 1b). Third, if no finite–
dimensional subspace of Ω is preserved (Figure 1c).

Ω0

j

Ω1

j

Ω2

j

. . .

(1a)

Ω0

@
�

Ω1

@

�

Ω2 . . .

(1b)

Figure 1: Subcases of symmetries.

Ω0

@ ?

Ω1

?
@

. . .

(1c)

The common methods of the general equivalence [16] can be directly applied only to the subcase (1a) and
with slight adaptations even to the subcase (1b) not occuring in the classical theory. Alas, the common
methods fail in the subcase (1c). No universal finite algorithm for the determination of all symmetries or
equivalences of diffieties is known.
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(V) On the variations [5],[7]

We expect that the determination of “approximative symmetries” is easier. They are realized by vector
fields.

Definition 2.5. Variations Z ∈ T (M) of a diffiety Ω ⊂ Φ(M) are defined by the condition LZΩ ⊂ Ω.
Variations generating a Lie group are called infinitesimal symmetries.

The Figure 1 with arrows denoting the Lie derivative LZ can be mentioned as well, however, the
comments are different compared to the previous case of the symmetries m. In more detail, the subcases
(1a) and (1b) concern the variations Z which generate a group, that is, we have the infinitesimal symmetries.
Then, paradoxically, the “true variations” of the subcase (1c) do not cause much difficulties.

Lemma 2.1. A variation Z is characterized by the property

(LDω)(Z) = Dω(Z) (D ∈ H, ω ∈ Ω). (15)

Proof. Inclusion LZΩ ⊂ Ω is equivalent to the identity LZH = [Z,H] ⊂ H which follows from the
equations

0 = Ω(H), 0 = Z(Ω(H)) = LZΩ(H) +Ω([Z,H]).

So we have

D(ω(Z)) = LDω(Z) + ω([D,Z]) = LDω(Z).

This simple Lemma 2.1 involves the common linearization procedure [12],[13] as a particular subcase
when ω = ω{f}. If a variation Z is represented by the series (13) then the coefficients ϕj(Z) with
appropriately chosen forms ϕj ∈ Ω can be effectively described. On the contrary, the study of the
infinitesimal symmetries Z is rather difficult: they satisfy one additional condition, the invariance of some
filtration. In general, there are too many filtrations and this prevents us from resolving the symmetry
problem completely.

(VI) On the evolutional diffieties

The infinitesimal symmetry Z ∈ T (M) of a diffiety Ω ⊂ Φ(M) is a classical concept with simple
geometrical significance, the flow on the underlying space M. The variations Z look rather ambiguous
in this respect, they are rather arguably identified with virtual flows on the vague space of solutions of
diffiety Ω [12],[13]. A rigorous view is however possible [5].

Let us introduce the direct product M̄ = M × R of manifolds with coordinate t in the factor R.
Omitting the technicalities, a function f ∈ Φ(M) can be regarded as a function on M̄ (independent of
t) and analogously for the forms ϕ ∈ Φ(M). If ϕ1, ϕ2, . . . is a basis of module Φ(M) then dt, ϕ1, ϕ2, . . .
constitute a basis of Φ(M̄). The vector fields Z̄ ∈ T (M̄) can be described as follows. There are horizontal
vector fields H ∈ T (M̄) satisfying Ht = 0 and they may be identified with vector fields H(t) ∈ T (M)
depending on parameter t which are distributed over M̄ by the t–shifts along the R–component. Then,
by using the obvious vertical vector field ∂/∂t, we obtain the unique decomposition

Z̄ = H + f̄
∂

∂t
(f̄ = Z̄t,Ht = 0, Hf = H(t)f if f ∈ F(M) ⊂ F(M̄))

into the horizontal and the vertical summands.
With this preparation, the following diffieties of rather special kind provide the rigorous geometrical

sense of the variations.

Definition 2.6. Let Z(t) ∈ T (M) be a variation depending on parameter t of a diffiety Ω ⊂ Φ(M). We
introduce the evolutional diffiety Ω̄ ⊂ Φ(M× R) with generators

ω(Z(t))dt− ω ∈ Ω̄ ⊂ Φ(M̄) (ω ∈ Ω). (16)
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Alternatively, the module H(Ω̄) is generated by all vector fields

E = Z(t) + ∂

∂t
∈ H(Ω̄) ⊂ T (M̄) and D ∈ H(Ω) (17)

where the vector fields D ∈ H(Ω) are identified with horizontal vector fields distributed over M× R.

Definition 2.7. An inclusion n : N → M (N ⊂ Rn, n = n(Ω)) is said to be a solution of diffiety
Ω ⊂ Φ(M) if n∗Ω = 0.

In accordance with tradition, we identify N = nN which better corresponds to the intuition: the
diffiety Ω identically vanishes on the subspace N = nN ⊂ M of the total space or, equivalently, all
vector fields D ∈ H(Ω) are tangent to this subspace N = nN ⊂ M of the dimension n = n(Ω). We
recall that the existence of solutions is a highly delicate task [11],[17],[15], to put it mildly. (Informally,
this is in fact a mere rigid formalism for the familiar concept: if x1, . . . , xn are independent variables
of diffiety Ω ⊂ Φ(M) and h1, h2, . . . are coordinates on M then the solution is given by such formulae
hj = hj(x1, . . . , xn) that satisfy the Pfaffian system ω = 0 (ω ∈ Ω).)

The resulting point is as follows. Let N̄ ⊂ M̄ be a solution of the evolutional diffiety Ω̄, hence
dim N̄ = dimH(Ω̄) and vector fields D̄ ∈ H(Ω̄) are tangent to N̄. Let N ⊂M be the projection of N̄.
Since the vector fields D distributed over M̄ are tangent to N̄, we conclude that the projections of the
level subsets t = const. of N̄ on N are solutions of Ω. On the other hand, E is tangent to N̄ as well and
generates a one–parameter group on N̄ where the R–component involves mere translations t→ t+ c. It
follows that the level sets on N̄ are permuted and the projections of the level sets in N, the solutions of
Ω, are permuted as well.

We summarize: a variation (possibly depending on a parameter) generates many flows, but each only
on a rather narow family of solutions of diffiety Ω.

Proposition 2.1. Let N̄ ⊂ M̄ = M× R be a solution of the evolutional diffiety Ω̄ ⊂ Φ(M̄) and N ⊂M
the natural projection of N̄. Then the level subsets t = const. of N̄ are projected on the solutions of diffiety
Ω ⊂ Φ(M). The vector field E ∈ T (M̄) generates a Lie group on N̄ and its projection Z(t) ∈ T (M)
permutes the solutions of Ω contained in N.

The multi–parameter evolution diffieties for the case of a finite–dimensional Lie algebra of variations
Z can be analogously introduced as well.

Remark. A huge literature on the infinitesimal symmetries in finite–order jet spaces exists. These are
the order–preserving Lie symmetries of Figure 1a. We cannot refer to any literature systematically devoted
to the order–destroying symmetries of Figure 1b. The main and rather original ideas of monograph
[13] concern the abstract theory of variations of Figure 1c, alas, with lack of any convincing examples
and applications. The alternative approach [12],[13] to the diffieties is worth mentioning, however, large
preparatory parts are devoted to finite–order jet spaces and neither the results nor the methods of proofs
can be carried over the diffieties, they are even misleading in many respects.

3 The Involutiveness

In the classical external theory, the involutivity ensures that a given finite system of differential equations
is compatible. In the classical internal theory, the involutivity ensures the same for a finite Pfaffian
system. We are interested in diffieties Ω where the compatibility is already attained. Then the involutivity
describes the structure of the higher–order summands of the A–moduleM corresponding to a given good
filtration Ω∗ and this is a mere algebra.

Let Z1, . . . , Zn (n = n(Ω)) be a basis of module H (= H(Ω)) and A(i) ⊂ A (i = 0, . . . , n) the ideal
generated by Z1, . . . , Zi. In particular A(0) = 0 and

A(n) = A1 ⊕A2 ⊕ · · · = m ⊂ A (A1 = H,A2 = H�H, . . .)
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is the maximal ideal. We introduce the factormodules

M(i) =M/A(i)M =M(i)0 ⊕M(i)1 ⊕ · · · (M(i)l =Ml/A(i)M∩Ml)

which are A–modules as well. In particular

Zi+1 :M(i)l →M(i)l+1 (i = 0, . . . , n− 1). (18)

Definition 3.1. The basis Z1, . . . , Zn is called ordinary (or: generic [5]) for a given good filtration Ω∗ if
(18) are injections for l large enough.

Theorem 3.1 ([5],[8]). There exists an ordinary basis of H.

In full generality, this is rather nontrivial result, however, for all current examples, such a basis can be
easily found: the vector fields Z1, Z2, . . . should not be too special, see also below. We are passing to the
main topic.

Definition 3.2. The basis Z1, . . . , Zn of H is called quasiregular if (18) are injections for all l ≥ 1.
A filtration Ω∗ is called involutive if there exists a quasiregular basis and moreover HMl =Ml+1 (l ≥ 0).

The last condition is clearly equivalent to Ωl +LHΩl = Ωl+1 (l ≥ 0) which can be ensured by a simple
change of the original filtration. Let us introduce the c–lift Ω∗+c (c = 0, 1, . . .) of the original filtration
Ω∗ such that

Ω∗+c = Ω̄∗ : Ω̄0 = Ωc ⊂ Ω̄1 = Ωc+1 ⊂ · · · ⊂ Ω = ∪Ω̄l = ∪Ωl+c.

Due to the second requirement (13), it follows easily that Theorem 3.1 is equivalent to:

Theorem 3.2. Every lift Ω∗+c with c large enough is involutive.

This provides the essence of all prolongations into the involutivity mechanisms [11],[16],[5],[18]. Also
the singular solutions can be included, see below.

We conclude with a brief description of the ordinary basis. The first term Z1 appears as follows [8].
There is a finite family of prime ideals p ⊂ A, p 6= A, associated to the module M, that is, such that
there exists a submodule ofM isomorphic to A/p. The multiplications Z :Ml →Ml+1 (Z ∈ H) are all
injective if and only if

Z /∈ A1 ∩ (∪p) = H ∩ (∪p). (19)

If all p 6= m then such Z = Z1 does exist. If however m belongs to the associated ideals then the
submodules ofM isomorphic to A/m = F can be included into the submoduleM0 ⊂M if the original
filtration Ω∗ is replaced with a c–lift large enough. The injectivity Z = Z1 : Ml → Ml+1 (l ≥ 1) is
ensured. The following terms Z2, . . . , Zn appear by analogous construction applied to the A–modules
M(1), . . . ,M(n− 1) instead ofM =M(0).

Altogether we conclude that the terms Z1, . . . , Zn of the ordinary basis should not lie in a finite family
of certain linear subspaces of the F–module H. We will succinctly express this property by saying that
they are “not too special”. It follows that the total derivatives D1, . . . , Dn ∈ H are “not too special” for
an appropriate “not too special” choice of the independent variables x1, . . . , xn.

Remark. The primary approach to the compatibility of the systems of differential equations directly
use the commutativity ∂2/∂x∂y = ∂2/∂y∂x of various second derivatives which results in perfect
ultimate theory [14]. However, though this theory can be effectively applied to particular problems, the
calculations strongly depend on subtle formal details. On the contrary, the É. Cartan’s involutivity [15]
subsequently completed with the prolongation procedure [16] is of the geometrical nature. In the actual
rigorous expositions, this topic belongs to the most difficult tasks even though the powerful tools of the
commutative and the homological algebra are applied [11],[18]. The classical involutivity concept differs
from ours in Definition 3.2, since the involutivity of a finite–order system of differential equations and
of a finite Pfaffian system is introduced [11],[17],[15],[16],[5] and Theorem 3.2 declares the involutivity
of every Pfaffian system ω = 0 (ω ∈ Ωl, l fixed and large enough) in the common classical sense, that
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is, we have involutivity together with the prolongation procedure involved. It should be noted that the
involutivity ensures the finite length of algorithms. This concerns the case (1a) of Figure 1 and prevents
us from completely discussing the remaining cases (1b) and (1c) in the present time.

We recall that except for some advanced applications in geometry [11],[17],[16], the involutivity can
be easily verified in all current examples of the analysis. On the other hand, the following technical tool
of standard filtrations directly inspired just by the abstract involutivity seems to be useful even for the
solution of various “simple” earthly problems to follow.

4 The Standard Filtrations

Theorems 3.1 and 3.2 concern the higher–order termsM[i]l of the A–moduleM[i]. Returning to the
original filtration Ω∗, they describe a certain property of the higher–order terms Ωl of a good filtration
Ω∗.

For given vector fields Z1, Z2, . . . ∈ H, let us introduce the large series of accompanying “rough”
filtrations

Ω(Z1)∗ : Ω(Z1)0 ⊂ Ω(Z1)1 ⊂ . . . ⊂ Ω (Ω(Z1)l =
∑
LkZ1

Ωl),
Ω(Z1, Z2)∗ : Ω(Z1, Z2)0 ⊂ Ω(Z1, Z2)1 ⊂ . . . ⊂ Ω (Ω(Z1, Z2)l =

∑
LkZ2

Ω(Z1)l),
· · ·

of diffiety Ω. For every submodule Θ ⊂ Φ and a vector field Z ∈ H(Θ) we moreover introduce the
submodule KerZΘ ⊂ Θ of all ϑ ∈ Θ with LZϑ ∈ Θ. (The latter concept will be applied only in the
particular case when Θ ⊂ Ω and Z ∈ H = H(Ω) ⊂ H(Θ).) One can see that Theorems 3.1 and 3.2 are
equivalent to the equalities

KerZ1Ωl+1 = Ωl,
KerZ2Ω(Z1)l+1 = Ω(Z1)l,

KerZ3Ω(Z1, Z2)l+1 = Ω(Z1, Z2)l,
. . .

(20)

valid for l large enough and not too special Z1, Z2, . . . ∈ H. Our next aim is to ensure (20) for all values
of l after appropriate adjustements and this is possible if certain obstructions R0,R1, . . . are absent.

Let us start with the first equality (20). Abbreviating X = Z1, we may suppose KerXΩl = Ωl−1 (l ≥ L)
and consider the inclusions

· · · ⊃ ΩL = KerXΩL+1 ⊃ ΩL−1 = KerXΩL ⊃ Ker2
XΩL ⊃ Ker3

XΩL ⊃ · · · .

The strict inclusions terminate with certain equalities KerkXΩL = Kerk+1
X ΩL (k ≥ K) and so we obtain

the new filtration
Ω̄∗ : Ω̄0 = KerK−1

X ΩL ⊂ Ω̄1 = KerK−2
X ΩL ⊂ · · ·

⊂ Ω̄K−2 = KerXΩL ⊂ Ω̄K−1 = ΩL ⊂ Ω̄K = ΩL+1 ⊂ · · ·
(21)

of diffiety Ω with strict inclusions together with the submodule

R0 = KerKXΩL = KerXΩ̄0 ⊂ Ω̄0 ⊂ Ω.

Theorem 4.1 ([5],[8],[9]). Filtration (21) does not depend on the choice of X. The module R0 is flat
and does not depend even on the choice of the original good filtration Ω∗.

So we may denote R0 = R0(Ω) and there are equalities

KerXΩ̄l+1 = Ω̄l (l > 0),KerXΩ̄0 = R0,KerXR0 = R0

corresponding to the injections

X : M̄l → M̄l+1 (l > 0), M̄0/R0 → M̄1 (M̄l = Ω̄l/Ω̄l−1)

for all not too special vector fields X ∈ H. The first equality (20) is universal if and only if R0 = 0 is the
trivial module.
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Passing to the second equality (20), the reasonings will be applied to “modulo Z1” as follows. We
abbreviate Y = Z2 and consider the inclusions

· · · ⊃ Ω(X)L ⊃ Ω(X)L−1 = KerYΩ(X)L ⊃ Ker2
YΩ(X)L ⊃ Ker3

YΩ(X)L ⊃ · · ·

with L large enough. The strict inclusions again terminate and we obtain the new filtration

Ω̄(X)∗ : Ω̄(X)0 = KerK−1
Y Ω(X)L ⊂ Ω̄(X)1 = KerK−2

Y Ω(X)L ⊂ · · ·
⊂ Ω̄(X)K−2 = KerYΩ(X)L ⊂ Ω̄(X)K−1 = Ω(X)L ⊂ Ω̄(X)K = Ω(X)L+1 ⊂ · · ·

(22)

of diffiety Ω with strict inclusions together with the module

R1 = KerKY Ω(X)L = KerY Ω̄(X)0 ⊂ Ω̄(X)0 ⊂ Ω.

Theorem 4.2 ([8],[9]). Filtration (22) does not depend on the choice of Y. The module R1 is flat and
does not depend even on the choice of the original good filtration Ω∗.

We may denote R1 = R1(Ω) and there are equalities

KerY Ω̄(X)l+1 = Ω̄(X)l (l > 0), KerY Ω̄(X)0 = R1, KerYR1 = R1

corresponding to the injections

Y : M̄[1]l → M̄[1]l+1 (l > 0), M̄[1]0/R1 → M̄[1]1 (M̄[1]l = Ω̄(X)l/Ω̄(X)l−1)

for all not too special vector fields Y ∈ H. The second equality (20) is universal if and only if R1 = 0 is
the trivial module.

The procedure can be continued with Z3, Z4, . . . as well with quite analogous result. We obtain certain
filtrations

Ω̄∗, Ω̄(Z1)∗, Ω̄(Z1, Z2)∗, . . .

which are good in the common sense that

LHΩ̄(·)l ⊂ Ω̄(·)l (all l), Ω̄(·)l + LHΩ̄(·)l = Ω̄(·)l+1 (l large enough) (23)

and moreover standard in the sense that

KerZk+1Ω̄(Z1, . . . , Zk)l+1 = Ω̄(Z1, . . . , Zk)l (l > 0),
KerZk+1Ω̄(Z1, . . . , Zk)0 = Rk, KerZk+1Rk = Rk. (24)

The procedure becomes trivial if k > ν = ν(Ω) since then

Ω(Z1, . . . , Zk)l = Ω (l large enough), Ω̄(Z1, . . . , Zk)l = Ω, Rk = Ω.

The resulting residual submodules Rk ⊂ Ω constitute the controllability series

R0 ⊂ R1 ⊂ · · · ⊂ Rν+1 = Ω, (25)

to be discussed below in more detail. We speak of a controllable diffiety Ω if R0 = · · · = Rν = 0 are
trivial modules.

5 Ordinary Differential Equations

We interrupt the general theory in order to clearly demonstrate the substance of the above construc-
tions. Let us mention the relatively simple diffieties Ω ⊂ Φ(M) with one independent variable x = x1
(abbreviation). Let Ω∗ : Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω be a good filtration. We recall the mappings

LD : Ωl → Ωl+1, Z :Ml →Ml+1 (Ml = Ωl/Ωl−1, Z ∈ H).
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Since H = H(Ω) ⊂ T (M) is one–dimensional submodule, then, omitting the trivial subcase dim M <∞,
we have the Hilbert polynomial

dimMl = c0 = µ(Ω) > 0 (l large enough). (26)

The involutivity becomes trivial, however, the standard filtration (21) with any nonvanishing vector field
X = Z1 ∈ H(Ω) is worth mentioning.

We may choose X = D = D1 the total derivative defined by the properties

Dx = 1, ω(D) = 0 (ω ∈ Ω)

(In particular examples to follow, explicit formulae will be stated.) In accordance with general theory, let
us suppose

KerDΩl+1 = Ωl (l ≥ L), KerkDΩL = Kerk+1
D ΩL (k ≥ K).

Then the standard filtration

Ω̄∗ : Ω̄0 = KerK−1
D ΩL ⊂ · · · ⊂ Ω̄K−2 = KerDΩL ⊂ Ω̄K−1 = ΩL ⊂ Ω̄K = ΩL+1 ⊂ · · · (27)

together with the flat submodule

R0 = KerKDΩL = KerDΩ̄0 ⊂ Ω0 (KerDR0 = R0) (28)

easily appears by a merely linear algebra. (We again refer to examples for quite explicit results. Warning:
the following construction of the standard basis cannot be directly generalized for the case of several
independent variables.) In the meantime, we also obtain a rather useful basis of diffiety Ω as a by–product.
This is made as follows. Let us choose a basis

τ r (r = 1, . . . , R = dimR0) of module R0 and then together with
πj0 (j = 1, . . . , j0) basis of the module Ω̄0 and then together with
πj1 = LDπj0 (j as above), πj

′

0 (j′ = j0 + 1, . . . , j1) of module Ω̄1, and then with
πj2 = L2

Dπ
j
0, π

j′

1 = LDπj
′

0 , π
j′′

0 (j′′ = j′1 + 1, . . . , j′2) of module Ω̄2,
· · · .

The procedure in a certain sense stops. The identity

KerDΩ̄K = KerDΩL+1 = ΩL = Ω̄K−1

implies jK = jK+1 and analogously jK+1 = jK+2 = · · · as well. We obtain only a finite number jk of
initial forms

π1
0 , . . . , π

j0
0 ∈ Ω̄0;πj0+1, . . . , πj1

0 ∈ Ω̄1; . . . ;πjK−1+1
0 , . . . , πjK

0 ∈ Ω̄K (29)

with the lower zero indices and they provide the so called standard basis

τ r (r = 1, . . . , R), πjs = LsDπ
j
0 (j = 1, . . . , jK ; s = 0, 1, . . . ) (30)

of diffiety Ω. In fact jK = c0 = µ(Ω) follows from (26) and since R0 is flat, there exists even a basis
τ r = dtr (r = 1, . . . , R = dimR0).

The result can be transparently visualized (see Figure 2): the original “cross–arrows LZ” are “collected”
in R0 and only the infinite sequences πjr = LrDπ

j
0 (j = 1, . . . , µ(Ω); r = 0, 1, . . .) without any crossing

remain.
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Figure 2: Filtrations.

Some immediate consequences of this construction both for the general theory and for the practice of
calculations are as follows.

5.1 The Uniqueness

We recall that the module R0 is unique. The standard filtration (27) is unique if µ(Ω) = 1 and we refer
to quite simple proof [7, Theorem 26]. This is the main result of the stimulating article [16] where the
concept of the absolute theory was introduced for the first time. Close connection to the beautiful explicit
solvability Monge problem [19],[20],[5] is worth mentioning, see also below.

5.2 The Morphisms [7]

If m : M→M is a morphism of Ω then

Dm∗x ·m∗LDω = LDm∗ω (ω ∈ Ω)

and in terms of the standard basis

m∗τ r ∈ R0, Dm∗x ·m∗πjs+1 = LDm∗πjs (all r, j, s). (31)

Such a morphism is invertible (m is a symmetry) if and only if

m∗R0 = R0, πj0 ∈m∗Ω (j = 1, . . . , µ(Ω)). (32)

It is however not easy to apply these results effectively in the general equivalence theory. For instance,
the solution of the symmetry problem even for the favourable case µ(Ω) = 1 in the famed article [21] was
not yet undestood in full detail, see the last sentence in the prominent textbook [22].

5.3 The Variations [7]

On the contrary, the surprisingly simple explicit formula

Z = zD +
∑

zr
∂

∂tr
+
∑

Dspj
∂

∂πjs
(33)

for all variations holds true. Here z, pj ∈ F(M) are arbitrary functions and zr = zr(t1, . . . , tR) arbitrary
composed functions. This is a consequence of general Lemma 2.1 applied to the standard basis (30).

5.4 The Infinitesimal Symmetries [5],[6],[7]

Variation (33) generates a Lie group if and only if it preserves an appropriate good (equivalently: standard)
filtration. This is informally described in Figures 1a and 1b where the “dotted filtration” is not known in
advance. In the favourable case µ(Ω) = 1, we may deal only with the unique standard filtration 1a and
the dotted Figure 1b can be omitted.
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5.5 A Pesimistic Prediction

Difficulties appearing in the case µ(Ω) > 1 were explicitly declared in [16]. This is the only pessimistic prog-
nosis for a mathematical theory in E. Cartan’s work and it was justified: the higher–order transformations
of the absolute theory with the general Monge problem are actually forgotten.

5.6 The Jet Diffieties

Passing to more individual examples from now on, we introduce the space M(m) with local jet coordinates

x, wjs (j = 1, . . . ,m; s = 0, 1, . . . ) (34)

and the submodule Ω(m) ⊂ Φ(M(m)) of all contact forms

ω =
∑

f jsω
j
s (finite sum, f js ∈ F(M(m)), ωjs = dwjs − w

j
s+1dx) (35)

with the total derivative

D = ∂

∂x
+
∑

wjs+1
∂

∂wjs
where LDωjs = ωjs+1

It follows that we have a diffiety: if Ω(m)l ⊂ Ω (l = 0, 1, . . .) is the submodule of the l–th order contact
forms (with s ≤ l in formula (35)) then

Ω(m)∗ : Ω(m)0 ⊂ Ω(m)1 ⊂ · · · ⊂ Ω = ∪Ω(m)l (36)

is a good filtration. This is even a standard filtration where R0 = 0 is trivial module and the contact
forms ωjs = πjs provide the standard basis.

We may refer to [2] for many particular examples of automorphisms m : M(m)→M(m) of diffiety
Ω(m) involving, e.g., the above wave mechanisms. We recall that they are in general unknown.

On the contrary, all variations

Z = zD +
∑

Dspj
∂

∂ωjs
(z, p1, . . . , pm arbitrary functions) (37)

are well–known. They constitute a huge Lie algebra and one of the main tasks of the soliton theory
concerns the determination of the special Abelian Lie subalgebras, the so called integrable hierarchies. On
this occasion, we cannot forget the impressive monograph [23]. Variations (37) preserving the filtration
(36) are either the infinitesimal point transformations or the infinitesimal Lie’s contact transformations.
This is a particular case of the Lie–Bäcklund theorem [10],[24]. Variations preserving other good filtrations
as in Figure(1b) and therefore generating a group of higher–order transformations are in general unknown.

5.7 The Hilbert–Cartan Equation

In order to demonstrate quite explicit results, we mention the infinitesimal symmetries of the ordinary
differential equation d2u/dx2 = F (dv/dx) with two unknown functions u = u(x) and v = v(x) thoroughly
treated in article [7]. The equation corresponds to the diffiety Ω ⊂ Φ(M) generated by the forms

α0 = du0 − u1dx, α1 = du1 − F (v1)dx, βr = dvr − vr+1dx (r = 0, 1, . . .)

in the space M with coordinates x, u0, u1, vr (r = 0, 1, . . .). Then

D = ∂

∂x
+ u1

∂

∂u0
+ F

∂

∂u1
+
∑

vr+1
∂

∂vr

where
LDα0 = α1, LDα1 = Dcdα1 = F ′β1, LDβr = βr+1 (r = 0, 1, . . . )
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and the submodules Ωl ⊂ Ω (l = 0, 1, . . . ) consisting of the forms

ω = a0α0 + a1α1 +
∑

brβr (r ≤ l; l = 0, 1, . . . )

with arbitrary coefficients a0, a1, br determine the primary good filtration Ω∗ : Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω of
diffiety Ω. Clearly µ(Ω) = 1, the standard filtration is unique and can be described as follows. Assume
DF ′ 6= 0 which is satisfied if F ′′ 6= 0. Abbreviating

α = α1 − F ′β0, π
1
0 = F ′α+DF ′α0,

then
LDα = −DF ′β0, π

1
1 = LDπ1

0 = 2DF ′α+D2F ′α0,

hence R0 = 0 is the trivial module and the submodules

Ω̄0 = {π1
0} = {F ′α1 +DF ′α0}

Ω̄1 = {π1
0 , π

1
1} = {F ′α1 +DF ′α0, 2DF ′α} = {α, α0}

Ω̄2 = {α, α0,LDα,LDα0} = {α, α0,−DF ′β0, α1} = {α0, α1, β0} = Ω1

Ω̄3 = Ω̄2 + LDΩ̄2 = Ω1 + LDΩ1 = Ω2, Ω̄4 = Ω3, . . .

of Ω constitute the (unique) standard filtration Ω̄∗ with the initial form π1
0 . The variations

Z = zD +
∑

Drp
∂

∂π1
r

(arbitrary z, p ∈ F(M(m)))

preserving the standard filtration are just the infinitesimal symmetries. So we have the requirement

LZπ1
0 = Zcdπ1

0 + dπ1
0(Z) = Zcdπ1

0 + dp = λπ1
0

with unknown factor λ. The calculations are lengthy. First of all, certain formulae [7, (107)] not stated
here uniquely express z and λ in terms of the function p. Then the crucial equation

p = F ′2P (·) + F ′Q(·)v2 ((·) = (x, u0, u1, v0, v1)),

where

P = 1
F ′

(Qx + u1Qu0) +
∫ ( 1

F ′

)′
Fdv1 ·Qu1 +

∫ ( 1
F ′

)′
v1dv1 ·Qv0 + P̄ (x, u0, u1, v0)

can be derived, see [7, (133)]. In the generic subcase [7, (144)] we obtain the final solution

Q = (Ax+ Ā)u1 +Bv0 + C1x− 2Au0 + C3, P̄ = Av0 + C (A, . . . , C ∈ R)

but special functions F admit more symmetries. For instance the exceptional 14–dimensional Lie algebra
G2 of symmetries for the Hilbert–Cartan equation where F = (dv/dx)1/2 was obtained [7, (175)] by for
the first time direct calculations in full accordance with quite other approach in the article [21].

5.8 Example: the Monge Equation

We mention the differential equation dw/dx = F (du/dx, dv/dx) with nonconstant F, however, only some
conceptual topics will be discussed and we refer to [7] for more detailed survey. The corresponding diffiety
Ω ⊂ Φ(M) has the natural basis denoted

αr = dur − ur+1dx, βr = dvr − vr+1dx (r = 0, 1, . . .), γ = dw − F (u1, v1)dx

in the space M with coordinates x, ur, vr (r = 0, 1, . . .) and w. The forms αr, βr (r ≤ l) and γ constitute
a basis of module Ωl (l = 0, 1, . . .) of the original good filtration Ω∗. The obvious identity

LDγ = Fu1α1 + Fv1β1 (D = ∂

∂x
+
∑

ur+1
∂

∂ur
+
∑

vr+1
∂

∂vr
+ F

∂

∂w
∈ H)
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represents the “cross” in Figure 2a. Then R0 = 0 and the forms

π1
0 = γ − Fu1α0 − Fv1β0, π

2
0 = β0

are initial for the standard filtration of Figure 2b. In more detail, the formulae

LDαr = αr+1,LDβr = βr+1 (r = 0, 1, . . . ),LDγ = Fu1α1 + Fv1β1

imply
π1

1 = LDπ1
0 = −DFu1α0 −DFv1β0

whence the submodules

Ω̄0 = {π1
0 , π

2
0} = {γ − Fu1α0, β0},

Ω̄1 = Ω̄0 + LDΩ̄0 = {π1
0 , π

2
0 , π

1
1 , π

2
1} = {α0, β0, γ} = Ω0,

Ω̄2 = Ω̄1 + LDΩ̄1 = Ω1, Ω̄3 = Ω2, . . .

of module Ω constitute a good filtration. The alternative basis

π1
0 = γ + · · · , π1

1 = −DFu1α0 + · · · , π1
2 = −DFu1α1 + · · · , · · · , π2

r = βr (r ≥ 0)

of diffiety Ω is better adapted for the calculations than the original one thanks to the absence of “crossings”.
Let us start with morphisms m : M→M of diffiety Ω. They are determined by formulae

m∗π1
0 =

∑
ajrπ

j
r , m∗π2

0 =
∑

bjrπ
j
r (arbitrary coefficients)

since the remaining forms
m∗πkr = m∗LrDπk0 (k = 1, 2; r = 1, 2, . . .)

satisfy the recurrence (31). We are however interested in invertible morphisms m though the criterion
(32) provides rather strong additional condition for the coefficients ajr and bjr. The problem is not yet
completely resolved.

On the contrary, all variations

Z = zD +
∑

Drp
∂

∂π1
r

+
∑

Drq
∂

∂π2
r

(arbitrary z, p, q)

are given by simple explicit formulae. We are however interested also in infinitesimal symmetries Z and
they moreover are bound to preserve a certain good filtration (Figures 1a and 1b). Since µ(Ω) = 2, there
are many possibilities and this is the reason why the symmetry problem for our seemingly simple Monge
equation is extremely difficult. We can only refer to three particular examples of symmetries

LZπ1
0 = µπ1

0 , LZπ2
0 = λ1

0π
1
0 + λ2

0π
2
0 + λ1

1π
1
1 ,

LZπ1
0 = µ1

0π
1
0 + µ2

0π
2
0 + µ2

1π
2
1 , LZπ2

0 = µπ2
0 ,

LZπ1
0 = λ1π1

0 + λ2π2
0 , LZπ2

0 = µ1π1
0 + µ2π2

0

discussed in [7] especially for the case F = u1v1.

5.9 The Monge Problem

There exists an automorphism m : M(3)→M(3) of the jet diffiety Ω(3) such that

m∗(x− F (w1
0, w

2
0)) = w3

1 − F (w1
1, w

2
1)

for every nonconstant function F, see [7, Appendix] and this may be regarded as a solution of a Monge
problem, which is as follows.
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We recall coordinates x,wjs (j = 1, 2, 3; s = 0, 1, . . . ) of the space M(3) and the diffiety Ω(3) generated
by all contact forms ωjs = dwjs − w

j
s+1dx where the solutions are given by formulae

wjs = wjs(x) = dswj(x)
dxs (arbitrary functions wj(x); j = 1, 2, 3).

(In traditional terms, we deal with all curves in four–dimensional space with variables x,w1, w2, w3.) Let
us consider only such curves that moreover satisfy

x = F (w1(x), w2(x)).

(Informally, they are lying in the three–dimensional subspace x = F (w1, w2). In fact we have the lower
diffiety Ω(2).) The mentioned automorphism m identifies these curves with all solutions of the Monge
equation

dw3
0

dx = F

(
dw1

0
dx ,

dw2
0

dx

)
.

(Altogether, there is explicit correspondence between solutions of diffiety Ω(2) and solutions of the Monge
equation.)

Still, in other terms, we have the subspace N ⊂M(3) given by equations

Dr(x− F (w1
0, w

2
0)) = 0 (r = 0, 1, . . . ; D = ∂

∂x
+
∑

wjr+1
∂

∂wjr
)

which is clearly isomorphic to M(2). It follows that the corresponding jet diffiety Ω(2) ⊂ Φ(M(2)) is
isomorphic to the diffiety Ω of the Monge equation. Roughly saying, the diffiety Ω of the Monge equation
is in fact the “trivial” diffiety Ω(2).

5.10 Calculus of Variations [5],[7],[25],[26],[27],[28]

The classical Lagrange problem concerning the one–dimensional variational integral subject to differential
constraints is represented by a diffiety Ω ⊂ Φ(M) together with a given form ϕ ∈ Φ(M). We are interested
in the variational integrals∫ b

a

n∗ϕ (n : N→M, n∗Ω = 0, N : a ≤ x ≤ b ⊂ R)

evaluated for the solutions n : N→M of diffiety Ω. Such a solution is called extremal if n∗Zcdϕ = 0 for
all variations Z along N, that is, n∗LZΩ = 0. This is in full accordance with the common approach since
then the obvious identities

n∗LZϕ = d n∗ϕ(Z),
∫ b

a

n∗LZϕ = n∗ϕ(Z)|x=b
x=a

declare that the variation of the integral (in the common sense) indeed depends only on the boundary
values. One can observe that the form ϕ can be replaced with any form ϕ+ ω (ω ∈ Ω) without change of
the extremals. At this place, let us apply the standard filtrations. Assuming the controllability R0 = 0,
a unique Poincaré–Cartan form ϕ̆ = ϕ+ ω̆ with appropriate ω̆ ∈ Ω exists such that

dϕ̆ ∼=
∑

ejπj0 ∧ dx (mod Ω ∧Ω; j = 1, . . . , µ(Ω)). (38)

This implies that the extremals n are characterized by the Euler–Lagrange equations n∗ej = 0 (j =
1, . . . , µ(Ω)) and satisfy the identities

n∗Zcdϕ̆ = 0,
∫ b

a

n∗LZ ϕ̆ = n∗ϕ̆(Z)|x=b
x=a

for all vector fields Z ∈ T (M).
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In particular ej = 0 (j = 1, 2, . . . ) identically if and only if the Poincaré–Cartan form ϕ̆ is a total
differential of appropriate function g hence ϕ ∼= ϕ̆ ∼= Dg · dx (mod Ω). The Noether theorem immediately
follows as well. Assuming

LZΩ ⊂ Ω, LZϕ ∈ Ω (appropriate Z ∈ T (M)), (39)

the function n∗Zcdϕ̆ is clearly constant for every extremal n.

5.11 Example: a Variational Integral

We mention only the variational integral∫
f(x, u0, v0, w0, u1, v1)dx (ur = dru

dxr , vr = drv
dxr )

with the constraint
w1 = F (x, u0, v0, w0, u1, v1).

Assuming

a = Fv0 −DFv1 + Fw0Fv1 6= 0 (D = ∂

∂x
+
∑

ur+1
∂

∂ur
+
∑

vr+1
∂

∂vr
+ F

∂

∂w0
),

there exists the Poincaré–Cartan form

ϕ̆ = fdx+ (fu1 −
b

a
Fu1)α+ (fv1 −

b

a
Fv1)β − b

a
γ

where
b = fv0 −Dfv1 + fw0Fv1 , α = du0 − u1dx, β = dv0 − v1dx, γ = dw0 − Fdx

and the Euler–Lagrange equations

e1 = fw0 −
b

a
Fw0 −D

b

a
= 0, e2 = B − b

a
A = 0

where
A = Fu0 −DFu1 + Fw0Fu1 , B = fu0 −Dfu1 + fw0Fu1 .

Since no uncertain multipliers appear, the Legendre, Jacobi, Hilbert–Weierstrass extremality conditions,
the Hamilton–Jacobi equations and the geodesic fields can be investigated without much difficulty quite
analogously as in the traditional unconstrained theory [25],[26],[27],[28].
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