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Abstract In this work, the Sturm–Liouville problem with boundary conditions depending rationally
on the spectral parameter is studied. We give a uniqueness theorem and algorithm to reconstruct
the potential of the problem from nodal points (zeros of eigenfunctions).
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1 Introduction

We consider the boundary value problem L generated by the regular Sturm–Liouville equation

`y := −y′′ + q(x)y = λy, x ∈ (0, 1) (1)

subject to the boundary conditions

U(y) := a(λ)y′(0)− b(λ)y(0) = 0 (2)
V (y) := c(λ)y′(1)− d(λ)y(1) = 0 (3)

and the jump conditions  y( 1
2 + 0) = αy( 1

2 − 0)

y′( 1
2 + 0) = α−1y′( 1

2 − 0) , (4)

where λ is the spectral parameter; q(x) is a real-valued function from the class L2(0, 1); α is a positive
real constant; a(λ), b(λ), c(λ) and d(λ) are real polynomials such that

a(λ) =
m∑
j=0

ajλ
j , b(λ) =

m∑
j=0

bjλ
j ,

c(λ) =
r∑
j=0

cjλ
j , d(λ) =

r∑
j=0

djλ
j ,

Without loss of generality, we assume that am = cr = 1 and
∫ 1

0 q(x)dx = 0, and define f = a(λ)
b(λ) .

The values of the parameter λ̧ for which L has nonzero solutions, are called eigenvalues and the
corresponding nontrivial solutions are called eigenfunctions.

Spectral problems for various differential equation with the eigen-dependent-boundary conditions have
been well studied. Inverse problems for the special case when f is an affine function on λ were solved in
[11]. The case when f is a more general rational function of λ is difficult. In [1]-[4], [8], [16], [13], [19] and
[23], various spectral problems with rational conditions were studied.

Inverse spectral problems for Sturm-Liouville operator with the discontinuity conditions, like (4), were
studied in [7], [12] and references therein.

The inverse nodal problem, which is different from the classical inverse spectral theory of Gelfand
and Levitan [10], was initiated by McLaughlin [15]. Later, Hald and McLaughlin [13] and Browne and
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Sleeman [5] proved that it is sufficient to know the nodal points to uniquely determine the potential
function of the regular Sturm–Liouville problem. Yang gave an algorithm to recover q from dense subset
of nodal points[20]. Recently, the inverse nodal Sturm–Liouville problems has been investigated by several
authors [5], [6], [13], [15], [17], [18], [21] and [22].

In the present paper, we investigate an impulsive Sturm-Liouville operator and give a uniqueness
theorem to reconstruct the potential of the problem from nodal points.

2 Preliminaries

Let ϕ(x, λ) be the solution of (1), satisfying the initial conditions

ϕ(0, λ) = a(λ), ϕ′(0, λ) = b(λ) (5)

and the jump conditions (4). Moreover, the following integral equations of the solution hold
for x < 1

2

ϕ(x, λ) = a(λ) cos
√
λx+ b(λ) sin

√
λx√
λ

(6)

+
∫ x

0

sin
√
λ (x− t)√
λ

q(t)ϕ(t, λ)dt,

for x > 1
2

ϕ(x, λ) = α+

[
a(λ) cos

√
λx+ b(λ) sin

√
λx√
λ

]

+α−
[
a(λ) cos

√
λ(1− x) + b(λ) sin

√
λ(1− x)√
λ

]
(7)

+
∫ 1/2

0

[
α+ sin

√
λ (x− t)√
λ

+ α−
sin
√
λ (1− x− t)√

λ

]
q(t)ϕ(t, λ)dt

+
∫ x

1/2

sin
√
λ (x− t)√
λ

q(t)ϕ(t, λ)dt

where α± = 1
2

(
α± 1

α

)
. Using these equations, we prove that the following asymptotic relations are

valid for |λ| → ∞,
for x < 1

2

ϕ(x, λ) = λm

{
cos
√
λx+ sin

√
λx√
λ

(
bm + 1

2

∫ x

0
q(t)dt

)
+ o

(
1√
λ

exp τx
)}

, (8)

for x > 1
2

ϕ(x, λ) = λm
{
α+ cos

√
λx+ α− cos

√
λ (1− x)

}
+ (9)

+λm− 1
2

{
α+I1(x) sin

√
λx+ α−I2(x) sin

√
λ (1− x)

}
+o
(
λm−

1
2 exp τx

)
where

I1(x) = bm + 1
2

∫ x

0
q(t)dt,

I2(x) = bm + 1
2

∫ 1/2

0
q(t)dt− 1

2

∫ x

1/2
q(t)dt.
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and τ =
∣∣∣Im√λ∣∣∣.

Consider the function
∆(λ) := c(λ)ϕ′(1, λ)− d(λ)ϕ(1, λ). (10)

∆(λ) is called characteristic function of the problem L. It is obvious that ∆(λ) is an entire function and
its zeros, namely {λn}n≥0 , are eigenvalues of the problem L. Moreover, the following relation holds.

∆(λ) = −α+λm+r
{√

λ sin
√
λ− w1 cos

√
λ+ w2 + o (exp τ)

}
. (11)

It can be shown using classical methods in the similar studies that the sequence {λn}n≥0 satisfies the
following asymptotic relation for n→∞:√

λn = (n−m− r)π + (w1 − (−1)n−m−rw2)
(n−m− r)π + o( 1

n
) (12)

where w1 = I1(1)− dr and w2 = α−

α+ (I2(1) + dr).
Let ϕ(x, λn) be the eigenfunction corresponding to the eigenvalue λn.
Lemma 2.1. ϕ(x, λn) has exactly n−m−r nodes

{
xjn : j = 0, n−m− r − 1

}
in (0, 1) for sufficiently

large n. The numbers
{
xjn
}
satisfy the following asymptotic formulae

for xjn ∈ (0, 1
2)

xjn =



(j+1/2)
n−m−r + I1(xj

n)
(n−m−r)2π2 −

(w1−w2)
(n−m−r)2π2

(j+1/2)
n−m−r

+o
( 1
n2

)
, for n−m− r = 2k

(j+1/2)
n−m−r + I1(xj

n)
(n−m−r)2π2 −

(w1+w2)
(n−m−r)2π2

(j+1/2)
n−m−r

+o
( 1
n2

)
, for n−m− r = 2k + 1

(13)

and for xjn ∈ (1
2 , 1)

xjn =



(j+1/2)
n−m−r + w1−w2

(n−m−r)2π2
(j+1/2)
n−m−r + 1

2(n−m−r)2π2

∫ x
0 q(t)dt

+ ρ0
(n−m−r)2π2 + o

( 1
n2

)
, for n−m− r = 2k

(j+1/2)
n−m−r + w1+w2

(n−m−r)2π2
(j+1/2)
n−m−r + 1

2(n−m−r)2π2

∫ x
0 q(t)dt

+ ρ1
(n−m−r)2π2 + o

( 1
n2

)
, for n−m− r = 2k + 1

(14)

where

ρ0 = α−

2α+

(∫ 1

1/2
q(t)dt−

∫ 1/2

0
q(t)dt− 2dr

)
+ α+ − α−

α+ bm,

ρ1 = α−

2α+

(
α+ + α−

α+ − α−

)(∫ 1/2

0
q(t)dt−

∫ 1

1/2
q(t)dt+ 2dr

)
+ (α+)2 − (α−)2

(α+ − α−)α+ bm.

Proof. It can be seen from (8), (9) and oscilation theorem that the function ϕ(x, λn) has exactly n−m−r
zeros in the interval (0, 1) for sufficiently large n. Using (8) and (9) again, we get the following asymptotic
formulae

ϕ(x, λn) = λmn

{
cos
√
λnx+ sin

√
λnx√
λn

I1(x) + o

(
exp τnx√

λn

)}
for x < 1

2 ,

ϕ(x, λn) = λmn

{
α+ cos

√
λnx+ α− cos

√
λn (1− x)

}
+λm− 1

2
{
α+I1(x) sin

√
λnx+ α−I2(x) sin

√
λn (1− x)

}
+o
(
λm−

1
2 exp τnx

)
for x > 1

2 .
(15)
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From

0 = ϕ(xjn, λn)

= λmn

{
α+ cos

√
λnx

j
n + α− cos

√
λn
(
1− xjn

)}
+λm− 1

2

{
α+I1(xjn) sin

√
λnx

j
n + α−I2(xjn) sin

√
λn
(
1− xjn

)}
+ o

(
λm−

1
2 exp τnxjn

)
,

we get

tan(
√
λnx− π

2 )

= (−1)n−m−r(w1 − (−1)n−m−rw2)α− + α+I1(x)− (−1)n−m−rα−I2(x)
(α+ + (−1)n−m−rα−) (n−m− r)π + o

(
1
n

)
,

for xjn > 1
2 . Taylor’s formula for the arctangent yields

xjn = (j + 1/2)
n−m− r

+ w1 − (−1)n−m−rw2

(n−m− r)2
π2

(j + 1/2)
n−m− r

+(−1)n−m−r(w1 − (−1)n−m−rw2)α− + α+I1(xjn)− (−1)n−m−rα−I2(xjn)
(α+ + (−1)n−m−rα−) (n−m− r)2

π2
+ o

(
1
n2

)
.

The last equality is the proof of (14). The equation (13) can be proved similarly.
Let X = X0 ∪X1 be the set of nodal points such that X0 =

{
xjn : n−m− r = 2s, s ∈ Z

}
, X1 ={

xjn : n−m− r = 2s+ 1, s ∈ Z
}
. For each fixed x ∈ [0, 1] and k ∈ {0, 1} , there exists a sequence(

x
j(n)
n

)
⊂ Xk which converges to x. Therefore, from Lemma 2.1, we can show the following limits are

exist and finite

lim
n→∞

(n−m− r)2
π2

(
xj(n)
n −

(
j(n) + 1

2
)
π

n−m− r

)
= fk(x), (16)

where

fk(x) =


1
2
∫ x

0 q(t)dt−
(
w1 − (−1)kw2

)
x+ bm for x < 1

2 ,

1
2
∫ x

0 q(t)dt−
(
w1 − (−1)kw2

)
x+ ρk for x > 1

2 .

Theorem 2.2. The given nodal sets X0 or X1 uniquely determine the potential q(x), a.e. on (0, 1)
and the coefficients bm and dr of the boundary conditions. The potential q(x) and the constants bm and
dr can be constructed by the following formulae:

1- For each fixed x ∈ [0, 1], choose a sequence
(
x
j(n)
n

)
⊂ X such that lim

n→∞
x
j(n)
n = x;

2- Find the function fk(x) from the equation (16) and calculate

q(x) = 2
[
f ′k(x)− fk(1) + fk(0) + fk(1

2 + 0)− fk(1
2 − 0)

]
(17)

bm = fk(0) (18)

dr = fk(1)− fk(1
2 + 0) + fk(1

2 − 0) (19)

− (−1)kα
−

α+

bm +
1/2∫
0

q(t)dt



154 Advances in Analysis, Vol. 2, No. 3, July 2017

AAN Copyright © 2017 Isaac Scientific Publishing

krs10
删划线

krs10
插入号
are 



Proof. Direct calculations in (13), (14) and (16) yield

bm = fk(0),
q(x) = 2

[
f ′k(x)−

(
w1 − (−1)kw2

)]
,

w1 − (−1)kw2 = fk(1)− ck

ck = fk(1
2 + 0)− fk(1

2 − 0) + bm,

dr = fk(1)− fk(1
2 + 0) + fk(1

2 − 0) +

− (−1)kα
−

α+

bm +
1/2∫
0

q(t)dt


This completes the proof.

Example 2.3. Consider the BVP

L :



`y := −y′′ + q(x)y = λy, x ∈ (0, 1),

a(λ)y′(0)− b(λ)y(0) = 0,

c(λ)y′(1)− d(λ)y(1) = 0,

y( 1
2 + 0) = αy( 1

2 − 0),

y′( 1
2 + 0) = α−1y′( 1

2 − 0)

where q(x) ∈ L2(0, 1) and a(λ), b(λ), c(λ) and d(λ) are unknown coefficients of the problem L. Let
Ω =

{
xjn
}
⊂ X0 be the dense subset of nodal points in (0, 1) satisfies the following asimptotics

If xjn ∈
(
0, 1

2
)
,

xjn = (j + 1/2)
n−m− r

+
2 + sin π( j+1/2

n−m−r )
2 (n−m− r)2

π2
+

+ 2α−

α+ (n−m− r)2
π2

(j + 1/2)
n−m− r

+ o
( 1
n2

)
,

If xjn ∈
( 1

2 , 1
)
,

xjn = (j + 1/2)
n−m− r

+
sin π( j+1/2

n−m−r )
2 (n−m− r)2

π2

+ 2α−

α+ (n−m− r)2
π2

(j + 1/2)
n−m− r

+
1− 3α−

α+

(n−m− r)2
π2

+ o
( 1
n2

)
.

It can be calculated that

f0(x) =


1 + 1

2 sin πx+ 2α−

α+ x, for x < 1
2 ,

1
2 sin πx+ 2α−

α+ x+ 1− 3α−

α+ for x > 1
2 ,

Advances in Analysis, Vol. 2, No. 3, July 2017 155

Copyright © 2017 Isaac Scientific Publishing AAN



q(x) = 2
[
f ′0(x)− f0(1) + f0(0) + f0(1

2 + 0)− f0(1
2 − 0)

]
= π cosπx,

bm = f0(0) = 1,

dr = f0(1)− f0(1
2 + 0) + f0(1

2 − 0)

−α
−

α+

bm +
1/2∫
0

q(t)dt

 = 1.
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