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Abstract Let {τn} be a certain sequence of functions in D converging to 1 in D′. The commutative
neutrix convolution f ♦∗ g of two distributions f and g in D′ is defined to be the neutrix limit of
the sequence

1
2 {(fτn) ∗ g + f ∗ (gτn)} ,

provided the limit exists. We present relations between this new convolution and other existing
distributional convolutions, and demonstrate its strong computational power in evaluating convo-
lutions as well as applications to defining new fractional derivatives and integrals of generalized
functions in the new space H which contains D′(R+). The neutrix convolutions xλ− ♦∗ xµ+ for
λ, µ, λ+ µ 6= 0,±1,±2, · · · and xλ− ♦∗ xs+ for λ 6= 0,±1,±2, · · · and s = 0, 1, 2, · · · are evaluated,
from which other neutrix convolutions are deduced.
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1 Introduction

One of the problems in distribution theory is the lack of definition for convolution and product of
distributions in general ([1], [2], [3] and [4]). It is well known that studying fractional calculus of
distributions and many types of integral equations are based on distributional convolutions ([5], [6], [7],
[8] and [9]). The classical definition for the convolution of two functions f and g is as follows:

Definition 1.1 Let f and g be functions. Then the convolutional product f ∗ g is defined by

(f ∗ g)(x) =
∫ ∞
−∞

f(t)g(x− t)dt

if the integral exists.
Let D be the Schwartz space [9] of infinitely differentiable functions with compact support in R, and

D′ be the space of distributions (linearly continuous functionals) defined on D. Further, we shall define a
sequence φ1(x), φ2(x), · · · , φn(x), · · · which converges to zero in D if all these functions vanish outside a
certain fixed and bounded interval, and converge uniformly to zero (in the usual sense) together with
their derivatives of any order. The functional δ is defined as

(δ, φ) = φ(0)

where φ ∈ D. Clearly, δ is a linear and continuous functional on D, and hence δ ∈ D′.
The convolution of certain pairs of distributions is usually defined as follows, see Gel’fand and Shilov

[9] for example.
Definition 1.2 Let f and g be distributions in D′ satisfying either of the following conditions:

(a) either f or g has bounded support (set of all essential points), or
(b) the supports of f and g are bounded on the same side.

Then the convolution f ∗ g is defined by the equation

((f ∗ g)(x), φ(x)) = (g(x), (f(y), φ(x+ y)))

for φ ∈ D.
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Note that if f and g are locally integrable functions satisfying either of the conditions in (a) or (b) in
Definition 1.2, then Definition 1.2 is in agreement with Definition 1.1. It also follows that if the convolution
f ∗ g exists by Definition 1.1 or 1.2, then the following equations hold:

f ∗ g = g ∗ f (1)
(f ∗ g)′ = f ∗ g′ = f ′ ∗ g (2)

where all the derivatives above are in the distributional sense.
Definitions 1.1 and 1.2 are very restrictive and can only be used for a small class of distributions.

In order to extend the convolution to a larger class of distributions, Jones [10] introduced the following
definition.

Definition 1.3 Let f and g be distributions in D′ and let τ(x) be an infinitely differentiable
function satisfying the following conditions:

(i) τ(x) = τ(−x),
(ii) 0 ≤ τ(x) ≤ 1,
(iii) τ(x) = 1 if |x| ≤ 1/2,
(iv) τ(x) = 0 if |x| ≥ 1.

Let
fn(x) = f(x)τ(x/n), gn(x) = g(x)τ(x/n)

for n = 1, 2, · · · . Then the convolution f ∗ g is defined as the limit of the sequence {fn ∗ gn}, provided the
limit h exists in the sense that

lim
n→∞

(fn ∗ gn, φ) = (h, φ)

for all testing functions φ ∈ D.
The convolution fn ∗ gn in Definition 1.3 clearly exists by Definition 1.2 as fn and gn have bounded

support. Furthermore, equation (1) holds. However, equation (2) need not necessarily hold since Jones
[10] proved that

1 ∗ sgnx = sgnx ∗ 1 = x,

(1 ∗ sgnx)′ = 1, 1′ ∗ sgnx = 0, 1 ∗ (sgnx)′ = 1 ∗ 2δ(x) = 2.

It can be proven that if a convolution exists by Definition 1.1 or 1.2 then it exists by Definition 1.3
and defines the same distribution. Therefore, Definition 1.3 generalizes Definitions 1.1 and 1.2. However,
there are still many convolutions which cannot be given by Definition 1.3. In order to fix this, Fisher [11]
presented the following definition.

Definition 1.4 Let f and g be distributions and let

τn(x) =

1 if |x| ≤ n,
τ(nnx− nn+1) if x > n,
τ(nnx+ nn+1) if x < −n,

for n = 1, 2, · · · , where τ is defined as in Definition 1.3. Let fn(x) = f(x)τn(x) for n = 1, 2, · · · . Then
the noncommutative neutrix convolution f ©∗ g is defined as the neutrix limit of the sequence {fn ∗ g},
provided the limit h exists in the sense that

N − lim
n→∞

(fn ∗ g, φ) = (h, φ)

for all φ ∈ D, where N is the neutrix, see van der Corput [12] (use the neutrix to abandon unwanted
infinite quantities from asymptotic expressions), having domain N ′ = {1, 2, · · · } and range the real
numbers, with negligible functions that are finite linear sums of functions

nλ lnr−1 n, lnr n, (λ > 0, r = 1, 2, · · · )

and all functions of n that converge to zero in the normal sense as n tends to infinity.
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The convolution fn ∗ g in this definition is again in the sense of Definition 1.2 as the support of fn is
contained in the interval [−n− n−n, n+ n−n]. It is also proven that if a convolution exists by Definition
1.1 or 1.2 then the noncommutative neutrix convolution exists and defines the same distribution [11].

To overcome the convolutional noncommutativity above, Fisher and Li [13] introduced the follow-
ing commutative neutrix convolution of distributions f and g by f ∗ g to distinguish it from the
noncommutative neutrix convolution in Definition 1.4.

Definition 1.5 Let f and g be distributions and let τn be defined as in Definition 1.4. Let
fn(x) = f(x)τn(x) and gn(x) = g(x)τn(x) for n = 1, 2, · · · . Then the commutative neutrix convolution
f ∗ g is defined as the neutrix limit of the sequence {fn ∗ gn}, provided the limit h exists in the sense
that

N − lim
n→∞

(fn ∗ gn, φ) = (h, φ)

for all φ ∈ D, where N is the neutrix given above.

2 The New Commutative Neutrix Convolution

Let δn(x) = nρ(nx) be Temples’ δ-sequence for n = 1, 2, · · · , where ρ(x) is a fixed, infinitely differentiable
function on R with the four properties:

(i) ρ(x) ≥ 0,
(ii) ρ(x) = 0 for |x| ≥ 1,
(iii) ρ(x) = ρ(−x),
(iv)

∫∞
−∞ ρ(x)dx = 1.

Both Kilicman [14] and Li [15], in 2001 and 2007 respectively, used the following distributional product
definition to deduce several commutative products.

Definition 2.1 Let f and g be distributions and let f̃n = f ∗ δn and g̃n = g ∗ δn. We say that the
commutative neutrix product f � g of f and g exists and is equal to h if

N − lim
n→∞

1
2
{

(f̃ng, φ) + (fg̃n, φ)
}

= (h, φ)

for all testing functions φ ∈ D. If the normal limit exists, then it is simply called the commutative product.
Note that f̃n and g̃n are two infinitely differentiable functions and hence (f̃ng, φ) as well as (fg̃n, φ) are
well defined.

As suggested from this definition, we present the following commutative neutrix convolutional definition.
Definition 2.2 Let f and g be distributions and let τn be defined as in Definition 1.4. Let

fn(x) = f(x)τn(x) and gn(x) = g(x)τn(x) for n = 1, 2, · · · . Then the commutative neutrix convolution
f ♦∗ g of f and g exists and is equal to h if

N − lim
n→∞

1
2 {((fτn) ∗ g, φ) + (f ∗ (gτn), φ)} = (h, φ)

for all testing functions φ ∈ D. If the normal limit exists, then it is simply called the commutative
convolution. Clearly, this definition generalizes Definitions 1.1 and 1.2.

Theorem 2.1 The commutative convolution xλ ♦∗ (sgnx · xλ) exists and

xλ ♦∗ (sgnx · xλ) = Γ 2(λ+ 1)
Γ (2λ+ 2)x

2λ+1

for λ > −1.

Proof. Consider the sum

I = (xλτn(x)) ∗ (sgnx · xλ) + (sgnx · xλτn(x)) ∗ xλ

=
∫ ∞
−∞

tλτn(t)sgn(x− t) (x− t)λdt+
∫ ∞
−∞

sgnt tλτn(t)(x− t)λdt

= I1 + I2.
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Clearly, for x ≥ 0

I1 =
∫ 0

−∞
tλτn(t)(x− t)λdt+

∫ x

0
tλτn(t)(x− t)λdt−

∫ ∞
x

tλτn(t)(x− t)λdt,

I2 = −
∫ 0

−∞
tλτn(t)(x− t)λdt+

∫ x

0
tλτn(t)(x− t)λdt+

∫ ∞
x

tλτn(t)(x− t)λdt.

This implies that

I = I1 + I2 = 2
∫ x

0
tλτn(t)(x− t)λdt

which is also true for x < 0 by a similar argument. Therefore,

(xλ ♦∗ (sgnx · xλ), φ) = lim
n→∞

(∫ x

0
tλτn(t)(x− t)λdt, φ

)
=
(∫ x

0
tλ(x− t)λdt, φ

)
since φ ∈ D and τn(t) = 1 for |t| ≤ n.

The conclusion follows immediately from∫ x

0
tλ(x− t)λdt = B(λ+ 1, λ+ 1)x2λ+1 = Γ 2(λ+ 1)

Γ (2λ+ 2)x
2λ+1

where B denotes the Beta function. This completes the proof of Theorem 2.1.

In particular, we come to

xr ♦∗ (sgnx · xr) = (r!)2

(2r + 1)!x
2r+1 (3)

for r = 0, 1, 2, · · · . This completely coincides with Fisher’s result in [16] by Definition 1.3.

Theorem 2.2

(sgnx · xr)©∗ xr = 0,

xr©∗ (sgnx · xr) = 2(r!)2

(2r + 1)!x
2r+1

for any nonnegative integer r.

Proof. We have

(sgnx · xrτn(x)) ∗ xr =
∫ ∞
−∞

sgnt trτn(t)(x− t)rdt

= −
∫ 0

−∞
trτn(t)(x− t)rdt+

∫ ∞
0

trτn(t)(x− t)rdt

= −
∫ −n
−n−n−n

trτn(t)(x− t)rdt−
∫ 0

−n
tr(x− t)rdt+

∫ n

0
tr(x− t)r

+
∫ n+n−n

n

trτn(t)(x− t)rdt

= I1 + I2 + I3 + I4.

Applying

(x− t)r = (−1)r
r∑
i=0

(
r

i

)
(−1)ixitr−i,
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we get

lim
n→∞

(I1, φ) = (−1)r+1
r∑
i=0

(
r

i

)
(−1)i lim

n→∞

∫ −n
−n−n−n

τn(t)t2r−idt
∫ ∞
−∞

xiφ(x)dx = 0

by noting that τn(t) is bounded and φ ∈ D. Similarly, we can imply

lim
n→∞

(I4, φ) = 0.

Clearly,

N − lim
n→∞

(I2, φ) = (−1)r+1
r∑
i=0

(
r

i

)
(−1)i(N − lim

n→∞
)
∫ 0

−n
t2r−idt

∫ ∞
−∞

xiφ(x)dx = 0.

Similarly,
N − lim

n→∞
(I3, φ) = 0.

Therefore, (sgnx · xr)©∗ xr = 0.
As for the second statement, we have

xrτn(x) ∗ (sgnx · xr) =
∫ ∞
−∞

trτn(t)sgn(x− t) (x− t)rdt

=
∫ x

−n−n−n

trτn(t)(x− t)rdt−
∫ n+n−n

x

trτn(t)(x− t)rdt = I1 + I2.

Clearly, we get

(I1, φ) =
(∫ −n
−n−n−n

trτn(t)(x− t)rdt, φ
)

+
(∫ x

−n
tr(x− t)rdt, φ

)
=
(∫ −n
−n−n−n

trτn(t)(x− t)rdt, φ
)

+
(∫ 0

−n
tr(x− t)rdt, φ

)
+
(∫ x

0
tr(x− t)rdt, φ

)
for x belonging to the support of φ which is contained in [−n, n].

It follows from the above that

N − lim
n→∞

(I1, φ) =
(∫ x

0
tr(x− t)rdt, φ

)
=
(

(r!)2

(2r + 1)!x
2r+1, φ

)
.

By analogous arguments, we can prove that

N − lim
n→∞

(I2, φ) =
(∫ x

0
tr(x− t)rdt, φ

)
=
(

(r!)2

(2r + 1)!x
2r+1, φ

)
.

Hence,

xr©∗ (sgnx · xr) = 2(r!)2

(2r + 1)!x
2r+1.

This completes the proof of Theorem 2.2.

Remark 1 It is very interesting to point out that both ((fτn) ∗ g, φ) and (f ∗ (gτn), φ) could be
divergent for some distributions f and g in the normal sense as n tends to infinity, but the addition
in Definition 2.2 is convergent and easily evaluated due to cancelations, as indicated in Theorem 2.1.
Furthermore, it seems much harder to find out the noncommutative convolutions (sgnx · xλ)©∗ xλ and
xλ©∗ (sgnx · xλ) for λ > −1 if it is still possible. On the other hand, one may need to use the neutrix
limit to evaluate some distributional convolutions using Definition 2.2 while Definition 1.4 does not do so.
The following is an example to demonstrate this.
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By Definition 2.2, we have

x2r ♦∗ sgnx = x2r+1

2r + 1
for r = 0, 1, 2, · · · . Indeed, we have

x2rτn(x) ∗ sgnx+ x2r ∗ sgnx τn(x) =
∫ ∞
−∞

t2rτn(t) sgn(x− t)dt+
∫ ∞
−∞

sgnt τn(t)(x− t)2rdt

=
∫ x

−n−n−n

t2rτn(t)dt−
∫ n+n−n

x

t2rτn(t)dt−
∫ 0

−n−n−n

(x− t)2rτn(t)dt

+
∫ n+n−n

0
(x− t)2rτn(t)dt = I1 + I2 + I3 + I4

for x belonging to the support of φ which is contained in [−n, n].
Clearly,

I1 + I2 =
∫ −n
−n−n−n

t2rτn(t)dt+
∫ x

−n
t2rdt−

∫ n

x

t2rdt−
∫ n+n−n

n

t2rτn(t)dt

= 2x2r+1

2r + 1

by noting that τn(t) is an even function. Without the neutrix limit, this derives that

x2r©∗ sgnx = 2x2r+1

2r + 1 , r = 0, 1, 2, · · ·

which is identical with the result in [17].
As for I3 + I4, we have

I3 + I4 = −
∫ −n
−n−n−n

(x− t)2rτn(t)dt−
∫ 0

−n
(x− t)2rdt+

∫ n

0
(x− t)2rdt

+
∫ n+n−n

n

(x− t)2rτn(t)dt

=
∫ n+n−n

n

[(x− t)2r − (x+ t)2r]τn(t)dt+ 2x2r+1

2r + 1 −
(x+ n)2r+1

2r + 1 − (x− n)2r+1

2r + 1 .

Hence we come to, for φ ∈ D,

lim
n→∞

(∫ n+n−n

n

[(x− t)2r − (x+ t)2r]τn(t)dt, φ
)

= 0,

N − lim
n→∞

(
2x2r+1

2r + 1 −
(x+ n)2r+1

2r + 1 − (x− n)2r+1

2r + 1 , φ

)
= 0

by the binomial formula and noting that

N − lim
n→∞

(
− (x+ n)2r+1

2r + 1 , φ

)
= −x

2r+1

2r + 1 ,

N − lim
n→∞

(
− (x− n)2r+1

2r + 1 , φ

)
= −x

2r+1

2r + 1 .

Hence
x2r ♦∗ sgnx = x2r+1

2r + 1 .
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The sum I3 + I4 in the above also deduces that

sgnx©∗ x2r = 0, r = 0, 1, 2, · · ·

with the neutrix limit.

Remark 2 Without the neutrix limit, Definitions 1.3 and 1.4 are independent in terms of existence.
Indeed, the noncommutative convolution of xsgnx and x in Definition 1.4 is divergent in the normal
sense as indicated above but Fisher proved the following using Definition 1.3 [16]

(sgnx · xr) ∗ xr = (r!)2

(2r + 1)!x
2r+1, r = 0, 1, 2, · · · .

Conversely, x2r+1©∗ 1 = 0. However, x ∗ 1 is divergent in Definition 1.3. In fact,

(x ∗ 1, φ) = lim
n→∞

(xτ(x/n) ∗ τ(x/n), φ).

Evidently,

xτ(x/n) ∗ τ(x/n) = n2
∫ 1

−1
yτ(y)τ(x/n− y)dy.

By the mean value theorem,

lim
n→∞

n

∫ 1

−1
yτ(y)τ(x/n− y)dy = −x

∫ 1

−1
τ ′(y)yτ(y)dy.

for x in the support of φ. Choosing φ such that
∫∞
−∞ xφ(x)dx 6= 0, we come to

(x ∗ 1, φ) = lim
n→∞

−n
∫ 1

−1
τ ′(y)yτ(y)dy

∫ ∞
−∞

xφ(x)dx =∞

by noting that ∫ 1

−1
τ ′(y)yτ(y)dy = 1

2

∫ 1

−1
τ2(y)dy

using integration by parts.

Remark 3 At this moment, it is not quite clear if Definition 1.5 is equivalent to Definition 2.2, although
both define the commutative neutrix convolutions. In fact,

N − lim
n→∞

1
2 {((fτn) ∗ g, φ) + (f ∗ (gτn), φ)} −N − lim

n→∞
(fn ∗ gn, φ)

= N − lim
n→∞

1
2 {((fτn) ∗ (g − gτn), φ) + ((f − fτn) ∗ (gτn), φ)} .

One can neither prove the above being zero nor non-zero by a counter example. The authors welcome and
appreciate any discussion from interested readers. However, the computational complexity of Definition
2.2 is less than that of Definition 1.5 in general, since the convolutions in Definition 2.2 only involve
one of factors τn(t) and τn(x− t), while Definition 1.5 has the product τn(t) τn(x− t) to consider. The
following is an example to illustrate this.

By Definition 1.5, we can show
1 ∗ (sgnx · x) = x2/2. (4)

To evaluate this convolution, we need consider∫ ∞
−∞

sgnt τn(t) τn(x− t)dt = −
∫ 0

−n−n−n

tτn(t) τn(x− t)dt+
∫ n+n−n

0
tτn(t) τn(x− t)dt

= −
∫ −n
−n−n−n

t τn(t) τn(x− t)dt−
∫ 0

−n
t τn(x− t)dt+

∫ n

0
t τn(x− t)dt

+
∫ n+n−n

n

t τn(t) τn(x− t)dt = I1 + I2 + I3 + I4.
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Clearly,

lim
n→∞

I1 = lim
n→∞

I4 = 0

by |τn(t) τn(x− t)| ≤ 1.
As for I2, we have for x < 0 in the support of φ

I2 = −
∫ 0

−n
t τn(x− t)dt = −

∫ 0

−n
tdt = n2/2

since τn(x− t) = 1.
When x ≥ 0,

I2 = −
∫ 0

−n
t τn(x− t)dt =

∫ x

x+n
(x− y)τn(y)dy = −

∫ n

x

(x− y)dy −
∫ n+n−n

n

(x− y)τn(y)dy

= (x− n)2

2 −
∫ n+n−n

n

(x− y)τn(y)dy.

Hence,

N − lim
n→∞

(I2, φ) =
{

(x2/2, φ) if x ≥ 0,
0 if x < 0.

Let us compute I3 for x ≥ 0,

I3 =
∫ n

0
t τn(x− t)dt =

∫ x

x−n
(x− y)τn(y)dy =

∫ x

x−n
(x− y)dy = n2/2

since τn(y) = 1 on [x− n, x], where x is in the support of φ.
When x < 0,

I3 =
∫ x

x−n
(x− y)τn(y)dy =

∫ −n
−n−n−n

(x− y)τn(y)dy +
∫ x

−n
(x− y)dy

= (x+ n)2/2 +
∫ −n
−n−n−n

(x− y)τn(y)dy.

Therefore,

N − lim
n→∞

(I3, φ) =
{

0 if x ≥ 0,
(x2/2, φ) if x < 0

by noting that

lim
n→∞

∫ −n
−n−n−n

(x− y)τn(y)dy = 0.

This completes the proof of equation (4).
We can derive the convolution of 1 and sgnx · x by Definition 2.2 in the following simpler process as

every term only contains one of two factors τn(t) and τn(x− t). Clearly,
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τn(x) ∗ (sgnx · x) + 1 ∗ (sgnx · xτn(x)) =
∫ ∞
−∞

τn(t)sgn(x− t) · (x− t)dt+
∫ ∞
−∞

τn(t)sgnt · tdt

=
∫ x

−∞
τn(t) · (x− t)dt−

∫ ∞
x

τn(t) · (x− t)dt+ 2
∫ ∞

0
tτn(t)dt

=
∫ −n
−n−n−n

τn(t) · (x− t)dt+
∫ x

−n
(x− t)dt−

∫ n

x

(x− t)dt−
∫ n+n−n

n

τn(t) · (x− t)dt

+2
∫ n

0
tdt+ 2

∫ n+n−n

n

τn(t) · tdt

=
∫ −n
−n−n−n

τn(t) · (x− t)dt+ (x+ n)2/2 + (x− n)2/2−
∫ n+n−n

n

τn(t) · (x− t)dt

+n2 + 2
∫ n+n−n

n

τn(t) · tdt.

This implies that
1 ♦∗ sgnx · x = x2/2.

Theorem 2.3 The commutative neutrix convolution xλ− ♦∗ x
µ
+ exists and

xλ− ♦∗ x
µ
+ = B(−λ− µ− 1, µ+ 1)xλ+µ+1

− +B(−λ− µ− 1, λ+ 1)xλ+µ+1
+ (5)

for λ, µ, λ+ µ 6= 0,±1,±2, · · · , where B denotes the Beta function.

Proof. We will first of all suppose λ, µ > −1, so that xλ− and xµ+ are locally integrable functions.
Consider

((xλ−τn(x)) ∗ xµ+, φ) = (yλ−τn(y), (xµ+, φ(x+ y)))

=
∫ 0

−n−n−n

(−y)λτn(y)
∫ ∞
−∞

xµ+φ(x+ y)dxdy

=
∫ 0

−n−n−n

(−y)λτn(y)
∫ b

a

(x− y)µ+φ(x)dxdy

=
∫ b

a

φ(x)
∫ −n
−n−n−n

(−y)λτn(y)(x− y)µ+dydx

+
∫ b

a

φ(x)
∫ 0

−n
(−y)λ(x− y)µ+dydx = I1 + I2

for any testing function φ ∈ D with the support in the interval [a, b].
When x < 0 and −n ≤ y ≤ 0, we have∫ 0

−n
(−y)λ(x− y)µ+dy =

∫ x

−n
(−y)λ(x− y)µdy.

On making the substitution y = xu−1, we arrive at∫ x

−n
(−y)λ(x− y)µdy = (−x)λ+µ+1

∫ 1

−x/n
u−λ−µ−2(1− u)µdu.

It follows that

N − lim
n→∞

∫ 0

−n
(−y)λ(x− y)µ+dy = B(−λ− µ− 1, µ+ 1)(−x)λ+µ+1,
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see [18] or Gel’fand and Shilov [9].
When x > 0, we make the substitution y = x(1− u−1) to get∫ 0

−n
(−y)λ(x− y)µdy = xλ+µ+1

∫ 1

x/x+n
u−λ−µ−2(1− u)λdu.

It follows similarly that

N − lim
n→∞

∫ 0

−n
(−y)λ(x− y)µdy = B(−λ− µ− 1, λ+ 1)xλ+µ+1.

Furthermore, we can see that
lim
n→∞

I1 = 0

as |(−y)λτn(y)(x− y)µ+| ≤ |(n+ n−n)λ+2(b+ n+ n−n)µ+2| = O(nµ+λ+4), assuming b > 0.
In summary,

N − lim
n→∞

((xλ−τn(x)) ∗ xµ+, φ) = N − lim
n→∞

I2 = (B(−λ− µ− 1, µ+ 1)xλ+µ+1
−

+B(−λ− µ− 1, λ+ 1)xλ+µ+1
+ , φ).

On the other hand, we can follow a similar step to evaluate

(xλ− ∗ (xµ+τn(x)), φ) = (yλ−, (xµ+τn(x), φ(x+ y)))

=
∫ 0

−n−n−n

(−y)λ
∫ b

a

(x− y)µ+τn(x− y)φ(x)dxdy

=
∫ b

a

φ(x)
∫ −n
−n−n−n

(−y)λ(x− y)µ+τn(x− y)dydx

+
∫ b

a

φ(x)
∫ 0

−n
(−y)λ(x− y)µ+τn(x− y)dydx.

When x < 0 and −n ≤ y ≤ 0, τn(x− y) = 1 by assuming n > −a. This implies that∫ 0

−n
(−y)λ(x− y)µ+τn(x− y)dy =

∫ x

−n
(−y)λ(x− y)µdy

= (−x)λ+µ+1
∫ 1

−x/n
u−λ−µ−2(1− u)µdu

using the substitution y = xu−1. This infers that

N − lim
n→∞

∫ 0

−n
(−y)λ(x− y)µ+τn(x− y)dy = B(−λ− µ− 1, µ+ 1)(−x)λ+µ+1.

When x > 0 and −n ≤ y ≤ 0, we have∫ 0

−n
(−y)λ(x− y)µ+τn(x− y)dy =

∫ x+n

x

(t− x)λtµτn(t)dt

=
∫ n

x

(t− x)λtµdt+
∫ n+n−n

n

(t− x)λtµτn(t)dt.

On making the substitution t = xu−1, we get∫ n

x

(t− x)λtµdt = xλ+µ+1
∫ 1

x/n

u−µ−λ−2(1− u)λdu
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and
N − lim

n→∞
xλ+µ+1

∫ 1

x/n

u−µ−λ−2(1− u)λdu = B(−λ− µ− 1, λ+ 1)xλ+µ+1

by the normalization in [9]. It follows similarly that

lim
n→∞

∫ b

a

φ(x)
∫ −n
−n−n−n

(−y)λ(x− y)µ+τn(x− y)dydx = 0, and

lim
n→∞

∫ n+n−n

n

(t− x)λtµτn(t)dt = 0.

Therefore,

N − lim
n→∞

(xλ− ∗ (xµ+τn(x)), φ) = (B(−λ− µ− 1, µ+ 1)xλ+µ+1
−

+B(−λ− µ− 1, λ+ 1)xλ+µ+1
+ , φ).

In other words,

xλ− ♦∗ x
µ
+ = B(−λ− µ− 1, µ+ 1)xλ+µ+1

− +B(−λ− µ− 1, λ+ 1)xλ+µ+1
+

for λ, µ > −1 and λ, µ, λ+ µ+ 1 6= 0, 1, 2, · · · .
By mathematical induction, we assume that equation (5) holds for µ > −1, −k < λ < −k + 1 and

µ, λ+ µ+ k 6= 0, 1, 2, · · · , where k is some positive integer. This is certainly true when k = 1. We are
going to show that

xλ−1
− ♦∗ xµ+ = −

(xλ− ♦∗ x
µ
+)′

λ
(6)

= B(−λ− µ, µ+ 1)xλ+µ
− +B(−λ− µ, λ)xλ+µ

+ .

Indeed, we have by Definition 2.2

((xλ− ♦∗ x
µ
+)′, φ(x)) = −(xλ− ♦∗ x

µ
+, φ

′(x))

= N − lim
n→∞

1
2{(((x

λ
−τn(x)) ∗ xµ+)′, φ(x)) + ((xλ− ∗ (xµ+τn(x)))′, φ(x))}.

Clearly,

((xλ−τn(x)) ∗ xµ+)′ = −λ(xλ−1
− τn(x)) ∗ xµ+ + (xλ−τ ′n(x)) ∗ xµ+

(xλ− ∗ (xµ+τn(x)))′ = −λxλ−1
− ∗ (xµ+τn(x)).

It remains to prove that
N − lim

n→∞
((xλ−τ ′n(x)) ∗ xµ+, φ(x)) = 0

since

N − lim
n→∞

−λ
2 {((x

λ−1
− τn(x)) ∗ xµ+, φ) + (xλ−1

− ∗ (xµ+τn(x)), φ)}

= (−λ(xλ−1
− ♦∗ xµ+), φ)

using Definition 2.2.
Evidently,

((xλ−τ ′n(x)) ∗ xµ+, φ(x)) =
∫ b

a

φ(x)
∫ −n
−n−n−n

(−y)λτ ′n(y)(x− y)µdydx

since the support of xλ−τ ′n(x) is contained in the interval [−n − n−n,−n] and n > −a > n−n without
loosing generality.
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Integrating by parts, we come to∫ −n
−n−n−n

(−y)λτ ′n(y)(x− y)µdy

= nλ(x+ n)µ +
∫ −n
−n−n−n

[λ(−y)λ−1(x− y)µ + µ(x− y)µ−1(−y)λ]τn(y)dy = I1 + I2.

Choosing a positive integer r greater than λ+ µ, we get by Taylor’s formula

I1 = nλ(x+ n)µ = nλ+µ(1 + x

n
)µ = nλ+µ

r∑
i=0

(µ)i
i!ni x

i + nλ+µ (µ)r+1(1 + ζ
n )µ−r−1

(r + 1)!nr+1 xr+1

where ζ is between 0 and x and

(µ)i =
{

1 if i = 0,
µ(µ− 1) · · · (µ− i+ 1) if i ≥ 1.

Thus,

N − lim
n→∞

(I1, φ) = N − lim
n→∞

nλ+µ
r∑
i=0

(µ)i
i!ni

∫ b

a

xiφ(x)dx

+ lim
n→∞

nλ+µ (µ)r+1

(r + 1)!nr+1

∫ b

a

(1 + ζ

n
)µ−r−1xr+1φ(x)dx = 0

by noting that λ+ µ 6= 0, 1, 2, · · · , r > λ+ µ and (1 + ζ

n
)µ−r−1xr+1φ(x) is bounded.

As for I2, we can see that
lim
n→∞

I2 = 0

by a similar argument mentioned above.
In summary, we derive that

xλ−1
− ♦∗ xµ+ = −

(xλ− ♦∗ x
µ
+)′

λ

= − 1
λ

(B(−λ− µ− 1, µ+ 1)xλ+µ+1
− +B(−λ− µ− 1, λ+ 1)xλ+µ+1

+ )′

= B(−λ− µ, µ+ 1)xλ+µ
− +B(−λ− µ, λ)xλ+µ

+

using the following identities

d

dx
xλ+µ+1
− = −(λ+ µ+ 1)xλ+µ

− ,

λ+ µ+ 1
λ

B(−λ− µ− 1, µ+ 1) = B(−λ− µ, µ+ 1),

d

dx
xλ+µ+1

+ = (λ+ µ+ 1)xλ+µ
+ ,

−λ+ µ+ 1
λ

B(−λ− µ− 1, λ+ 1) = B(−λ− µ, λ).

It follows from the above that equation (5) holds for µ > −1, µ 6= 0, 1, 2, · · · and λ, λ+µ 6= 0,±1,±2, · · · .
A parallel argument shows that equation (5) still holds for −k < µ < −k + 1 and λ, λ + µ 6=

0,±1,±2, · · · , where k is some positive integer. This completes the proof of Theorem 2.3.

Remark 4 Theorem 2.3 was first proved by Fisher and Li in [13] using Definition 1.5 with complicated
computations as many terms involve the product of τn(t) and τn(x− t) in general.
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Theorem 2.4 The commutative neutrix convolution xλ− ♦∗ xs+ exists and

xλ− ♦∗ xs+ = (−1)s+1B(λ+ 1, s+ 1)xλ+s+1
− (7)

for λ 6= 0,±1,±2, · · · and s = 0, 1, 2, · · · .

Proof. It follows from Γ (−s) =∞ that

B(−λ− s− 1, λ+ 1) = 0.

Applying the identity
Γ (z)Γ (1− z) = π

sin zπ
we have

B(−λ− s− 1, s+ 1) = Γ (−λ− s− 1)Γ (s+ 1)
Γ (−λ)

= (−1)s+1π

Γ (λ+ s+ 2) sin(λ+ 1)π ·
Γ (s+ 1)
Γ (−λ)

= (−1)s+1Γ (λ+ 1)Γ (s+ 1)
Γ (λ+ s+ 2) = (−1)s+1B(λ+ 1, s+ 1).

The rest follows exactly from the proof of equation (5) by restricting µ = s = 0, 1, 2, · · · . This completes
the proof of Theorem 2.4.

Corollary 2.1 The following commutative neutrix convolutions exist and

xλ+ ♦∗ xs− = (−1)s+1B(λ+ 1, s+ 1)xλ+s+1
+ , (8)

xλ− ♦∗ xs = 0, (9)
xλ+ ♦∗ xs = 0 (10)

for λ 6= 0,±1,±2, · · · and s = 0, 1, 2, · · · .

Proof. Equation (8) follows immediately on replacing x by −x in equation (7). The following two
identities imply equation (9)

xλ− ∗ xs− = B(λ+ 1, s+ 1)xλ+s+1
− ,

xs = xs+ + (−1)sxs−.

Equation (10) clearly follows on replacing x by −x in equation (9).

Theorem 2.5 The commutative neutrix convolution xr− ♦∗ xs+ exists and

xr− ♦∗ xs+ = B(r + 1, s+ 1)[(−1)r+1xr+s+1
+ + (−1)s+1xr+s+1

− ]

for r, s = 0, 1, 2, · · · .

Proof. It follows from reference [18] that

B(−n, m) = (−1)mB(m, n−m+ 1)

for m = 1, 2, · · · , n and n = 1, 2, · · · . The proof of Theorem 2.3 is still valid with λ = r and µ = s. This
completes the proof of Theorem 2.5.

Corollary 2.2 The commutative neutrix convolution xr− ♦∗ xs exists and

xr− ♦∗ xs = (−1)r+1B(r + 1, s+ 1)xr+s+1
+

for r, s = 0, 1, 2, · · · .
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Proof. Since
xs = xs+ + (−1)sxs−

we have

xr− ♦∗ (xs+ + (−1)sxs−) = xr− ♦∗ xs+ + xr− ♦∗ (−1)sxs−
= (−1)r+1B(r + 1, s+ 1)xr+s+1

+

by Theorem 2.5.
By Corollary 2.2, we imply that

xr+ ♦∗ xs = (−1)r+s+1B(r + 1, s+ 1)xr+s+1
−

for r, s = 0, 1, 2, · · · .

Corollary 2.3 The commutative neutrix convolution xr ♦∗ xs exists and

xr ♦∗ xs = −B(r + 1, s+ 1)[xr+s+1
+ + (−1)r+sxr+s+1

− ]

for r, s = 0, 1, 2, · · · .

Proof. It follows immediately from Corollary 2.2.

Theorem 2.6 The commutative neutrix convolution 1
1 + e−a(x−c) ♦∗ sgnx exists and

1
1 + e−a(x−c) ♦∗ sgnx = 3x

2 + 2
a

ln(1 + e−a(x−c))− c

where a, c ∈ R and a 6= 0.

Proof. Consider(
τn(x)

1 + e−a(x−c) ∗ sgnx, φ
)

=
(∫ ∞
−∞

τn(t)sgn(x− t)
1 + e−a(t−c) , φ

)
=
(∫ −n
−n−n−n

τn(t)dt
1 + e−a(t−c) +

∫ x

−n

dt

1 + e−a(t−c) −
∫ n

x

dt

1 + e−a(t−c) −
∫ n+n−n

n

τn(t)dt
1 + e−a(t−c) , φ

)
= (I1 + I2 − I3 − I4, φ)

by assuming |x| < n.
As for I1, we can see that

τn(t)
1 + e−a(t−c) = ea(t−c)τn(t)

1 + ea(t−c)

is bounded on the interval [−n− n−n,−n]. This implies that

lim
n→∞

(I1, φ) = 0.

Similarly, we derive that
lim
n→∞

(I4, φ) = 0.

Making the substitution u = 1 + e−a(t−c), we come to

I2 − I3 = 2x+ 2
a

ln(1 + e−a(x−c))− 1
a

[ln(1 + e−a(−n−c)) + ln(1 + e−a(n−c))]

It follows that
N − lim

n→∞
−1
a

[ln(1 + e−a(−n−c)) + ln(1 + e−a(n−c))] = −c,
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which infers that

N − lim
n→∞

(
τn(x)

1 + e−a(x−c) ∗ sgnx, φ
)

= (2x+ 2
a

ln(1 + e−a(x−c))− c, φ).

Following a similar step, we can show that

N − lim
n→∞

(
1

1 + e−a(x−c) ∗ sgnx τn(x), φ
)

= (x+ 2
a

ln(1 + e−a(x−c))− c, φ).

This completes the proof of Theorem 2.6.
From the above computation, we also get for a, c ∈ R and a 6= 0

1
1 + e−a(x−c) ©∗ sgnx = 2x+ 2

a
ln(1 + e−a(x−c))− c,

sgnx©∗ 1
1 + e−a(x−c) = x+ 2

a
ln(1 + e−a(x−c))− c.

3 Fractional Calculus of Distributions

In this section, we will use the new convolutions of distributions presented in section 2 to define fractional
integrals and derivatives of some distributions without bounded support or support contained in R+. We
obtain a number of interesting and new results which are not achievable in the classical sense.

Let D′(R+) be the subspace of D′ with support contained in R+. It follows from [8] and [9] that

Φλ =
xλ−1

+
Γ (λ) ∈ D

′(R+) is an entire function of λ on the complex plane, and

xλ−1
+
Γ (λ)

∣∣∣∣∣
λ=−n

= δ(n)(x), for n = 0, 1, 2, · · · . (11)

For the functional Φλ =
xλ−1

+
Γ (λ) , the derivative formula is simpler than that for xλ+. In fact,

d

dx
Φλ = d

dx

xλ−1
+
Γ (λ) =

(λ− 1)xλ−2
+

Γ (λ) =
xλ−2

+
Γ (λ− 1) = Φλ−1. (12)

Let λ and µ be arbitrary complex numbers. Then it is easy to show

Φλ ∗ Φµ = Φλ+µ (13)

by equation (12), without any help of analytic continuation mentioned in all current books.
Let λ be an arbitrary complex number and g(x) be the distribution concentrated on x ≥ 0. We define

the primitive of order λ of g as the convolution in the distributional sense [8]

gλ(x) = g(x) ∗
xλ−1

+
Γ (λ) = g(x) ∗ Φλ. (14)

Note that the convolution on the right-hand side is well defined by Definition 1.2 since the supports of g
and Φλ are bounded on the same side.

For a given function, its classical Riemann-Liouville derivative or Caputo derivative [19], [20] and [21]
may not exist in general [7], [22] and [23]. Even if they do, the Riemann-Liouville derivative and the
Caputo derivative are not necessarily the same. However, if g(x) is a distribution in D′(R+), then the
case is different. Let m− 1 < Reλ < m ∈ Z+. From equation (2), we derive that

g−λ(x) = g(x) ∗
x−λ−1

+
Γ (−λ) = g(x) ∗ dm

dxm
xm−λ−1

+
Γ (m− λ)

= dm

dxm

(
g(x) ∗

xm−λ−1
+

Γ (m− λ)

)
=

xm−λ−1
+

Γ (m− λ) ∗ g
(m)(x),
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which indicates there is no difference between the Riemann-Liouville derivative and the Caputo derivative
of the distribution g(x) (both exist clearly). Based on this fact, we only call the fractional derivative of
distribution for brevity.

Equation (13) derives that if g is a distribution concentrated on R+, then

(g ∗ Φλ) ∗ Φµ = g ∗ (Φλ ∗ Φµ) = g ∗ Φλ+µ. (15)

Setting µ = −λ we see that differentiation and integration of the same order are mutually inverse processes.
It follows from equation (15) that

dβ

dxβ

(
dγg

dxγ

)
= dβ+γg

dxβ+γ

for any β and γ.
Replacing λ by −λ in equation (13), we get

dλ

dxλ

(
xµ−1

+
Γ (µ)

)
=

xµ−λ−1
+

Γ (µ− λ) . (16)

In particular, we have

d
1
2

dx
1
2
x+ =

2x
1
2
+√
π
,

d−
1
2

dx−
1
2
x+ =

4x1.5
+

3
√
π
,

d
1
2

dx
1
2
θ(x) =

x
− 1

2
+√
π
,

d−
1
2

dx−
1
2
θ(x) = 2√

π
x0.5

+ ,

d0.25

dx0.25x
−1.5
+ = Γ (−0.5)

Γ (−0.75)x
−1.75
+ = −2

√
π

Γ (−0.75)x
−1.75
+ .

Writing µ = −k in equation (16), where k is a nonnegative integer, we come to

dλ

dxλ
δ(k)(x) =

x−k−λ−1
+

Γ (−k − λ) .

In particular,

d
1
2

dx
1
2
δ(x) =

x−1.5
+

Γ (−0.5) = −
x−1.5

+
2
√
π
,

d
1
2

dx
1
2
δ′(x) =

x−2.5
+

Γ (−1.5) =
3x−2.5

+
4
√
π

using
Γ (−1/2) = −2

√
π, Γ (−3/2) = 4

√
π/3.

Setting µ− λ = −k in equation (16), where k is a nonnegative integer, we have

dλ

dxλ

(
xλ−k−1

+
Γ (λ− k)

)
= δ(k)(x).

Let λ be an arbitrary complex number and H be a subspace of D′ given by

H = { g ∈ D′ | g ♦∗ Φλ exists }.

Clearly, H contains D′(R+) as a proper subspace since Definition 2.2 generalizes Definition 1.2.
Let g(x) be the distribution in H. We define the primitive of order λ of g as the convolution given by

Definition 2.2 in the distributional sense

gλ(x) = g(x) ♦∗
xλ−1

+
Γ (λ) = g(x) ♦∗ Φλ. (17)
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Note that the convolution on the right-hand side is well defined since g is in H.
Thus equation (17) with various λ will not only give the fractional derivatives, but also the fractional

integrals of g(x) ∈ H when λ 6∈ Z, and it reduces to integer-order derivatives or integrals when λ ∈ Z.
We shall define the convolution

g−λ = g(x) ♦∗ Φ−λ
as the fractional derivative of the distribution g(x) with order λ, writing it as

g−λ = dλ

dxλ
g

for Reλ ≥ 0. Similarly, dλ

dxλ
g is interpreted as the fractional integral of order λ if Reλ < 0.

Theorem 3.1
dλ

dxλ
xµ− = 1

Γ (−λ) [B(λ− µ,−λ)xµ−λ− +B(λ− µ, µ+ 1)xµ−λ+ ] (18)

for µ− λ 6= 0, 1, 2, · · · , λ, µ, λ+ µ 6= 0,±1,±2, · · · .

Proof. Clearly, we have by Theorem 2.3

dλ

dxλ
xµ− = = xµ− ♦∗

x−λ−1
+
Γ (−λ)

= 1
Γ (−λ) [B(λ− µ,−λ)xµ−λ− +B(λ− µ, µ+ 1)xµ−λ+ ]

for µ− λ 6= 0, 1, 2, · · · , λ, µ, λ+ µ 6= 0,±1,±2, · · · .

In particular,
d0.5

dx0.5x
0.75
− = − 1

2
√
π

[B(−0.25,−0.5)x0.25
− +B(−0.25, 1.75)x0.25

+ ].

Remark 5 The previous studies on fractional derivatives of distributions in [5], [6], [7] and [8] are

unable to give the above results since the support of xµ− is contained in (−∞, 0]. By the way, there are
Beta function calculators online from which we can find approximate distributions for fractional integrals
and derivatives of generalized functions in H.

It follows that λ-order derivatives of distributions such as

|x|µ = xµ+ + xµ−,

sgnx · |x|µ = xµ+ − x
µ
−

exist for some values of λ and µ by Theorem 2.3. We leave them for interested readers.
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