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Abstract. Spatially homogeneous Kantowski-Sachs cosmological model filled with barotropic fluid 
and dark energy is obtained in a scalar tensor theory of gravitation proposed by Brans and Dicke 
(1961). We consider both cases when the dark energy is minimally coupled to barotropic fluid as well 
as directly interacts with it. In these two cases the EoS parameter of dark energy is in good 
agreement with the observational data. Also some important features of the models, thus obtained, 
have been discussed. 
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1   Introduction 

In the study of modern cosmology, we consider that the total energy density of the universe is 
dominated by the densities of two components: the dark matter and the dark energy. The recent 
observational data strongly motivate researchers to study general properties of cosmological models 
containing more than one fluid. These universes are modeled with perfect fluids and with mixtures of 
non-interacting fluids under the assumption that there is no energy transfer among the components. But, 
such scenarios are not confirmed by observational data. This motivates us to study cosmological models 
containing fluids which interact with each other. In recent years there has been immense interest in 
cosmological models with dark energy in general relativity because of the fact that our observable 
universes is undergoing a phase of accelerated expansion which has been confirmed by several 
cosmological observations such as type 1a supernova by several authors (Riess et al. [1], [2], [3] 
Perlmutter et al.[4], [5], [6], Knop et al. [7]). Caldwell [8] & Huange [9] have discussed cosmic microwave 
background (CMB) anisotropy and Daniel et al. [10] have studied large scale structure and strongly 
indicate that dark energy dominates the present universe, causing cosmic acceleration. Based on these 
observations, cosmologists have accepted the idea of dark energy, which is a fluid with negative pressure 
making up around 70 % of the present universe energy content to be responsible for this acceleration 
due to repulsive gravitation. 

Cosmologists have proposed many candidates for dark energy to fit the current observations such as 
cosmological constant, tachyon, quintessence, phantom and so on. Evolution of the equation of state 
(EoS) of dark energy /D D Dp   has transferred from 1D    in the near past (quintessence region) 
to 1D    at recent stage (phantom region). Akarsu and Kilinc [11], [12], Yadav [13], Yadav and 
Yadav [14], Pradhan et al. [15],[16], Pradhan and Amirhashchi [17] and Yadav et al. [18] have 
investigated different aspects of dark energy models in general relativity with variable EoS parameter. 
The concept of dark energy was proposed for understanding this currently accelerating expansion of the 
universe, and then its existence was confirmed by several high precision observational experiments 
(Bennett et al. [19]; Spergel et al. [20]; Tegmark et al. [21]), especially the Wilkinson Microwave 
Anisotropy Probe (WMAP) satellite experiment. The WMAP shows that dark energy occupies about 
73% of the energy of the universe, and dark matter about 23%. The usual baryon matter, which can be 
described by our known particle theory, occupies only about 4% of the total energy of the universe.  

This motivates us to study cosmological models containing fluids which interact with each other. 
Tolman [22] and Davidson [23] have considered the interaction between dust-like matter and radiation. 
Cataldo et al. [24] have considered the simplest non-trivial cosmological scenarios for an interacting 
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mixture of two cosmic fluids described by power-law scale factors, i.e. the expansion as a power-law in 
time. Whereas, an interacting and a non-interacting two-fluid scenario for dark energy in an FRW 
universe with constant deceleration parameter has been described by Pradhan et al. [25]. Adhav et al. 
[26] have investigated interacting cosmic fluids in LRS Bianchi type-I cosmological model. Saha et al. 
[27] revisited two-fluid scenario for dark energy models in an FRW universe investigated by 
Amirhashchi et al. [28]. Adhav et al. [29] have studied Kaluza-Klein interacting cosmic fluid 
cosmological model. Reddy and Santhi Kumar [30] have discussed two-fluid scenario for dark energy 
model in a scalar-tensor theory of gravitation. Amirhashchi et al. [31] have studied interacting two-fluid 
viscous dark energy models in a non-flat universe.  

Brans-Dicke [32] theory of gravitation is a natural extension of general relativity which introduces an 
additional scalar field   besides the metric tensor ijg  and dimensionless coupling constant  . The 
Brans-Dicke field equations combined with scalar and tensor field are given by 

 1 2 , 1 ,
,, ;, ;
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where R  is the scalar curvature,   and n  are constants, ijT  is the stress energy tensor of the matter 
and comma and semicolon denote partial and covariant differentiation respectively.  

Also, we have energy conservation equation  
 ; 0ij

jT    (3) 

This equation is a consequence of the field equations (1) and (2). 
Several aspects of Brans-Dicke cosmology have been extensively investigated by many authors. The 

work of Singh and Rai [33] gives a detailed survey of Brans-Dicke cosmological models. Reddy and Rao 
[34], Banerjee and Santos [35], Shriram [36], Shriram and Singh [37], Berman et al. [38], Reddy [39], 
Reddy and Naidu [40], Adhav et al.[41], Rao and Vijaya Santhi [42], [43], [44], Naidu et al.[45], Vidya 
Sagar et al. [46] and Das & Abdulla [47] are some of the authors who have investigated several aspects 
of this theory. Recently, Pawar and Solanke [48] have discussed exact Kantowski-Sachs anisotropic dark 
energy cosmological models in Brans-Dicke theory of gravitation.          

In this paper, we will discuss spatially homogeneous Kantowski-Sachs cosmological model filled with 
barotropic fluid and dark energy in Brans and Dicke [32] theory of gravitation. The plan of the paper is, 
in section 2 we discuss metric and energy momentum tensor. In section 3, we obtained solutions for 
interacting and non-interacting cosmological models. We discussed some other important features of the 
obtained models in section 4. The last section contains some conclusions. 

2   Metric and Energy Momentum Tensor 

We consider a spatially homogeneous Kantowski - Sachs metric of the form 
  2 2 2 2 2 2 2 2d d d d sin ds t A r B         (4) 

where &A B  are the functions of time t  only. 
The total energy momentum tensor for two fluids is given by 

 ( )ij tot tot i j tot ijT p u u p g     (5) 

where tot m D     and tot m Dp p p  . Here m  and mp are energy density and pressure of 
barotropic fluid and &D Dp  are energy density and pressure of dark fluid respectively, iu  is the four-
velocity of the fluid satisfying the following condition, 
 1jig u uij    (6) 

In a co-moving coordinate system, we get 
 1 2 3 4

1 2 3 4,  and 0 for tot tot
iT T T p T T i jj         (7) 

where the quantities tot  and totp  are functions of ‘ t ’ only. 
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3   Solutions of Field Equations 

Now with the help of (5)-(7), the field equations (1) and (2) for the metric (4) can be written as 
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Also the energy conservation equation leads to 
 3 ( ) 0tot tot totH p      (12)               
Here the over head dot denotes differentiation with respect to t . 

The equations (8) to (12) is a system of four independent equations with five unknowns , , ,tot totA B p   
and  . In order to get a deterministic solution we take the following plausible physical condition, the 
shear scalar   is proportional to scalar expansion  , which leads to the linear relationship between 
the metric potentials A  and B , i.e., 
 nB A , where 1n   is a constant.   (13) 

Using (13) the above field equations (8) to (11) can be written as 
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By considering the radiating model, i.e., for 
 3tot totp    (18) 

the field equation (17) can be written as 
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From equations (14), (15) and (19), we get 
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From equation (20), we get 
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, ( 1n  ) and 3k  is an integrating constant.  
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Also, the scalar field is given by 
 4 6 5 6cos sink k t k k t     (23) 

where 4k , 5k  are integrating constants and 6 2k m n  . 
Thus the metric (4) can be written as  
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The EoS of the barotropic fluid and dark energy are respectively given by 
  and m D

m D

p p
m D 

    (25) 

In the following sections we deal with two cases, (i) non-interacting two-fluid model and (ii) 
interacting two-fluid model. 

Non-interacting two-fluid model 

First, we consider that two fluids do not interact with each other. Therefore, the general form of 
conservation equation (3.5) leads us to write the conservation equation for the dark and barotropic fluid 
separately as,  
 3 ( ) 0m m mH p      (26) 

and  
 3 ( ) 0D D DH p      (27) 

Here is, of course, a structural difference between equations (26) and (27). Because equation (26) is in 
the form of m  which is constant and hence equation (26) is integrable. But equation (27) is a function 
of D . Accordingly, D  and Dp  are also functions of D . Therefore, we cannot integrate equation 
(27) as it is a function of D  which is an unknown time dependent parameter. 

Integrating equation (26) leads to 
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From equations (16), (21) - (23) and (28), we get 
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where 4 7cosk k , 5 7sink k . 
From equations (25) and (28), we get 
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From equations (15), (21) - (23) and (30), we get 
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From equations (25), (29) and (31), we get  
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Thus the metric (24) together with (23) and (28)-(32) constitutes Kantowski-Sachs non-interacting 
two-fluid cosmological model in Brans-Dicke scalar tensor theory of gravitation. 

 

Figure 1. Plot of EoS parameter of dark energy versus time in non-interacting case 

Figure 1 describes the behavior of EoS parameter of dark energy versus time. It is observed that the 
EoS parameter is an increasing function of time and varying in phantom region ( 3 1D    ) and 
Quintessence region ( 1D   ). The rapid increase in early stage of universe depends on the EoS 
parameter of ordinary matter m . Also, it is in good agreement with the theoretical results as well as 
the recent observations.  

Interacting two-fluid model 

Secondly, we consider the interaction between dark energy and barotropic fluids. For this purpose we 
can write the continuity equations for dark fluid and barotropic fluids as  
 3 ( )m m mH p Q      (33) 

and 
 3 ( )D D DH p Q       (34) 

The quantity Q expresses the interaction between the dark energy components. Since we are 
interested in an energy transfer from the dark energy to dark matter, we consider Q>0 which ensures 
that the second law of thermodynamics is fulfilled (Pavon and Wang [49]). Here we emphasize that the 
continuity equations (33) and (34) imply that the interaction term (Q) should be proportional to a 

quantity with units of inverse of time, i.e. 1Q
t

 . Therefore, a first and natural candidate can be the 

Hubble factor H multiplied with the energy density. Following Amendola et al. [50] and Guo et al. [51], 
we consider  
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 3 mQ H   (35) 

where   is a coupling constant.  
Using equation (35) in equation (33) and after integrating, we obtain 
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From equations (16), (21) - (23) and (36), we get energy density for dark energy as   
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From equations (25) and (37), we get  
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From equations (14), (21) - (23) and (38) we get dark energy pressure as 
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From equations (25), (37) and (39), we get EoS parameter for dark energy as 
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Thus the metric (24) together with (23) and (36)-(40) constitutes Kantowski-Sachs interacting two-
fluid cosmological model in Brans-Dicke scalar tensor theory of gravitation. 

 

 

Figure 2. Plot of EoS parameter of dark energy versus time in interacting case 
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Figure 2 demonstrates the behavior of the EoS parameter of dark energy versus time. It is observed 
that the EoS parameter is varying in Quintessence region only. 

4   Some Other Important Properties of the Models 

The spatial volume for the models is 

  
21

12
2 3

2

( ) sin sin
n

k
V g k t k

k



 

     
 

  (41) 

The average scale factor for the model is 

   1
3

2
1 3

/13
2 3

2

( ) sin sin

n

k
a t V k t k

k




 
    

 
  (42) 

The expansion scalar   is given by 
    , 2 2 32 coti

iu k n k t k       (43) 

The shear scalar is given by 

     22
2 2 3

1 1 2 cot
2 2

ij
ij k n k t k        (44) 

The deceleration parameter q  is given by 

  2 2 2
, 2 3

1 3( 3 )( ) 1 sec
3 2

i
iq u k t k

n
        


  (45) 

The deceleration parameter appearing with negative sign implies accelerating expansion of the 
universe, which is consistent with the present day observations.  

The Hubble’s parameter H  is given by 

    2 2 3
1 2 cot
3

H k n k t k     (46) 

The mean anisotropy parameter Am is given by 

 
2

12
2

nAm n
 

   
  (47) 

The tensor of rotation , ,w u uij i j j i   is identically zero and hence this universe is non- rotational. 

5   Conclusions 

In this paper, we have obtained and presented spatially homogeneous Kantowski-Sachs cosmological 
models filled with barotropic fluid and dark energy in a scalar tensor theory of gravitation proposed by 
Brans and Dicke [32]. The role of two-fluid either minimally or directly coupled in the evolution of the 
dark energy parameter has been investigated. 

The following are the observations and conclusions:  
 The obtained models have singularity at *t t  where *

3 2/t k k  .  
 The volume of the models vanishes at *t t  and the expansion scalar tends to infinity, which 

shows that the universe starts evolving with zero volume at *t t  with an infinite rate of 
expansion.  
 

 The EoS parameter of the non-interacting two-fluid model provided by (32) may accommodate 
the acceptable range 1.67 0.62D     of SNe Ia data (Knop et al. [7]). While the EoS 
parameter of the interacting model is varying in only quintessence ( 1D   ). 

 From equation (45), it is observed that deceleration parameter is negative for small values of t 
and hence the obtained models represent accelerated expansion of the universe at initial epoch. 
Recent observations of type Ia supernovae (Perlmutter et al. [6]; Riess et al. [1]) reveal that the 
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present universe is in accelerating phase and deceleration parameter lies somewhere in the range 
1 0q   . It follows that our two-fluid dark energy models of the universe are consistent with 

the recent observations. 
 From (47), one can observe that 0mA   and this indicates that these models are anisotropic.  
The two models presented here are anisotropic, non-rotating, shearing and also accelerating. Hence 

they represent not only the early stage of evolution but also the present universe. 
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