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Abstract. We have investigated new cosmological models in five-dimensional Kaluza-Klein space-
time with a variable gravitational constant ‘G’ and cosmological constant ‘Λ ’. The Einstein’s field 
equations have been solved for Kaluza-Klein space-time in the presence of a perfect fluid with time 
dependent G and Λ . We find a variety of solutions in which G increases and Λ  decreases with 
time t . The extra dimension becomes insignificant as t → ∞  and we are left with the real four 
dimensional universe. 
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1   Introduction 

The High-z supernova search team (Tonry et al, 2003 [1]) confirms the results of High Red Shift Type Ia 
Supernova and Supernova Cosmological Project team (Garnavich et al, 1998 [2], Perlmutter et al, 1997 
[3], 1998 [4], 1999 [5], Riess et al, 1998 [6], Schmidt et al, 1998 [7]) that a positive cosmological constant 
of order (Gh/c3≈10-123) may dominate the total energy density in the universe (Sahni, 2000 [8]). These 
observational analyses also indicate that the supernova luminosity distances imply an accelerating 
universe with total negative pressure for the universe. 

The cosmological models formulated for higher dimensional space-time play a vital role in many 
aspects of early stage of cosmological problems, which are one of the frontier areas of research to unify 
gravity with other forces in nature. The study of higher dimensional space-time provides an idea that 
our universe was much smaller at an earlier stage of evolution than observed today and extra 
dimensions were contracted to a very small dimension. The detection of extra dimensions in current 
experiments is beyond those four dimensions observed so far.   

The possibility of extra dimensions in the space-time has attracted various researchers to the field of 
cosmology. The field of cosmology has been highly enriched by the Kaluza [9] and Klein [10] theory, in 
which they have shown that gravitation and electromagnetism could be unified in a single geometrical 
structure. Chodas and Detweiler (1980 [11]) obtained higher dimensional cosmological model in which 
extra dimension contracts and implies that this contraction of extra dimension is due to consequences of 
cosmological evolution. The extra dimensions produce massive amount of entropy during the contraction 
process, as shown by Guth (1981 [12]), and Alvarez and Gavela (1983 [13]). This provides an alternative 
solution to the flatness and horizon problems as compared to the usual inflationary scenario. In the 
previous years, a number of authors (Freund, 1982 [14], Appelquist and Codos, 1983 [15], Randjbar-
Daemi et al, 1984 [16], Rahaman et al, 2002 [17], Singh et al, 2004 [19], Khandetar et al, 2006 [20], 
Yilmaz and Yavuz, 2006 [21], Mohanty et al, 2006 [22], 2007 [23], Pradhan et al, 2007 [24]) obtained the 
solutions of Einstein’s field equations for higher dimensional space-times containing a variety of matter 
fields. In their analysis, some authors have shown that there is an expansion of four dimensional space-
times while the fifth dimension contracts or remains constant.  
In 1937, Dirac [25] proposed the idea of a variable gravitational constant G in the framework of general 
relativity. The modifications linking the variation of G with that of Λ  have been proposed within the 
framework of general relativity by Lau (1985 [26]). This alteration allow us to use Einstein’s field 
equations formally unchanged since a variation in Λ  is accompanied by a variation of G. The above 
present approach is non-covariant and Einstein’s field equations cannot be obtained from a Hamilitonian. 
This approach solves many cosmological problems, viz., the cosmological constant problem, the initial 
singularity problem and inflationary universe scenario. As mentioned by Kalligas et al (1992 [32]), this 
approach may be the limit of more viable, fully covariant theory, such as a five-dimensional Kaluza-
Klein theory. 
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Cosmological models in higher-dimensional space-time with variable gravitational constant G and 
cosmological constant Λ  have been studied by a limited number of authors. Chakraborty and Ghosh 
[27], Rahaman and Bera [28], and Rahaman et al, (2006 [18]) obtained cosmological models in Kaluza-
Klein Space-time for the context of different geometries. Baysal and Yilmaz, (2007 [30]) investigated 
cosmological models in five-dimensional Kaluza-Klein space-time with variable G and Λ . 

The goal of this article is to investigate physically sound cosmological models in five-dimensional 
Kaluza-Klein space-times with variable G and Λ . In this paper, we have solved the Einstein’s field 
equations for five-dimensional Kaluza-Klein space-time in the presence of perfect fluid with time 
dependent G and Λ .  

2   Einstein’s Field Equations for Kaluza-Klein Space-times. 

The Five-dimensional Kaluza-Klein space-time is described by [10] 

 ( )( ) ( )2 2 2 2 2 2 2 2ds dt X t dx dy dz A t dψ= − + + + +   (1) 

The Einstein’s field equations with time-dependent gravitational and cosmological ‘constants’ are given 
by 

 1 8 ( ) ( )
2ij ij ij ijR g R G t T t gπ− = − − Λ   (2) 

Energy momentum tensor for a one-fluid source is 
 ( )ij i j i jT p u u pgρ= + −   (3)                                                

with 
 1i j

i jg u u =   (4) 
ρ  is the  energy density and p  is the isotropic pressure of the fluid. ui is the five-velocity of the time-
like vector satisfying the equation (4). The off diagonal equations of (2) together with energy conditions

0, 0p ρ ρ+ ≥ ≥  imply that: 
 (0,0,0,0,1)iu =   (5) 
Using equations (2), (3), and (5), surviving field equations (1) are: 

 
2

2
3 3 8XA X G

XA X
π ρ+ = + Λ


 

  (6) 

 
2

2
3 3 8X X Gp

X X
π+ = − + Λ

 

  (7) 

 
2

2
2 2 8X A X XA Gp
X A XAX

π+ + + = − + Λ
 

  

  (8) 

The usual conservation law for Einstein’s field equation ; 0ij
jT = (; i.e. semicolon denotes covariant 

divergence) implies: 

 ( )3 0X A p
X A

ρ ρ
 

+ + + = 
 




   (9) 

In Einstein’s theory, the principle of equivalence must require that G and Λ  not enter the equation of 
motion of particle and photons, i.e. only gij must enter them. The vanishing of the covariant divergence 
of the Einstein tensor in equation (2) and together with equation (9), we obtain 
 8 Gπ ρΛ = − 

   (10) 
Here, an overdot denotes a derivative with respect to cosmic time t . These are four equations (6 -9 or 
10) in six unknowns. Thus to get a solution we require two additional relations. These relations may be 
taken to involve field variables as well as physical variables. In the following sections we shall explore 
the possibility of finding physically meaningful solutions of the field equations subject to specified 
geometrical and physical conditions. 

3   Solutions of Field Equations. 

One of the relation is the equation of state 
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p wρ=  (11) 
From equations (7) and (8) an equation connecting X  and A  is obtained: 

2

2
2 2 0X A X XA

X A XAX
− + − =
 

  

(12) 

Another relation is the power law from one of the field parameters, that is 
nX t= (13) 

where w and n are constant. Substituting the equation (13) to equation (12) and integrating, we obtain 
(1 3 )n nA t tα β −= +  (14) 

Using the equations (13), (14) and (11), the resulting solution can be expressed as follows: 
(1 )4nt t

ω
ρ δ α β

− +
 = +  (15) 

2 2 (4 1) 2 2

2 (4 1)

(2 2 ) (2 2 )(1 )
3

n

n

n n n t n n n n

t t

ω α ω ω βω
α β

−

−

 + − + − + −+  Λ =
 + 

(16) 

( ) ( )(4 1) (4 1)

(1 )

(2 4 )8 (1 )
3

n nt n t n n
G

t

ω

ω

α β α βπδ ω
− −

−

+ + −+
= (17) 

The cosmological parameters are given by: 
(4 1)

(4 1)

4 n

n

n t

t t

α β
θ

α β

−

−

 + =
 + 

(18) 

2 2
2

22 (4 1)

(4 1)3
8 n

n

t t

β
σ

α β−

−
=

 + 

(19) 

2 2(4 1) (4 1) 2

2(4 1)

4 (3 4 ) 4 (7 12 ) 2

4

n n

n

n n t n n tq
n t

α αβ β

α β

− −

−

− + − +
=

 + 

(20) 

where α  and β  are non-negative integration constants. The solution has one or two distinct 

singularities viz. 0t =  and t α
β

=  depending upon the sign of the constants of integration. We come 

across six types of situations depending upon the parameters w , α  and β : 

Case I: 0α = . In this case, nX t= , (1 3 )nA tβ −= , ( ) (1 )
t

ω
ρ δ β

− +
= , 

2

3 (2 1)(1 )
(1 )

n n
t

ω
ω

− −
Λ =

+
, 8 Gπδ =

(1 )

(1 )

6 (1 2 )
(1 )

n n
t

ω

ω

β
ω

+

−

−
+

, 1
t

θ = , (4 1)3
8

n
t

σ
−

=  and 2q = . Putting 1
( 3)

n
m

=
+

, we obtain the solution given 

by Baysal and Yilmaz [30]. 

Case II: 0β = . In this case, nX t= , nA tα= , ( ) (1 )4nt
ω

ρ δ α
− +

= , 
2 2

2

3(2 2 )
(1 )
n n n

t
ω

ω
+ −

Λ =
+

, 8 Gπδ =

(4 1) (1 )

(1 )

3 ( )
(1 )

nn t
t

ω

ω

α
ω

− +

−+
, 4n

t
θ = , 0σ =  and 3 4

4
nq

n
−

= , 1w ≠ − . For 1
2(1 )

n
ω

=
+

, Λ  becomes zero and 

(1 )

2

3
16 (1 )

nG constant
ωα

πδ ω

+

= =
+

, which corresponds to a radiation dominated universe for 3
8

n =  and 

matter dominated universe for 1
2

n =  with Einstein gravity. Λ  is decreases with time t  as time 

increases and Λ  is non-negative, for 10
2(1 )

n and n
w

< >
+

; whereas for 10
2(1 )

n
w

< <
+

, Λ is negative.

The parameter q becomes insignificant for 3 / 4n =  and negative for 0 3 / 4.n and n< >  For 
1 1w− < ≤ , it gives the range for the parameter (n) 1 / 4 n≤ < ∞ . Here for a particular choice of 
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3 / 4n > , we can find the q and w negative, and Λ  small positive constant, which can support the 
observations by supernova cosmology project. 

Case III: 0ω = . In this case, nX t= , (1 3 )n nA t tα β −= + , 
4nt t
δρ

α β
=
 + 

, 
2

3 (2 1)n n
t
−

Λ =  and G =

(4 1)3 2(1 2 )

8

nn t n

t

α β

πδ

− + −  . For 0n = , Λ  and G  become insignificant and 1
t

ρ ∝ . For 1
2

n = , 1
t

ρ ∝

and gravitational constant G is constant and cosmological constant is absent. This case is similar to the 

cosmological solutions obtained by Oli (2008 [33]) for 2
3

n = (case II). Λ  is decreasing function of t  and 

for 0n <  and 1
2

n >  , Λ  is non-negative; whereas for 10
2

n< <  , Λ  is negative. For 1 ( 0)
2

n n< ≠ ,

G<0 for all t  and decreases monotonically as t  increases. For 1
2

n > , G is non-negative for all t and 

becomes insignificant for 

1
(4 1)2(2 1) nnt t β

α

−

∗

 −
= =  

 
 and increases monotonically afterwards. 

Case IV: 1ω = . In this case, (1 3 )
22 (4 1)

, , ,n n n

n
X t A t t

t t

δα β ρ
α β

−

−
= = + =

 + 

 
(4 1)

2 (4 1)

3 (4 1)
2

n

n

n n t
t t

α
α β

−

−

−
Λ =

 + 

and G =
(4 1) (4 1)3 2(1 2 )

16

n nn t t nα β α β

πδ

− −   + + −    . For 0n = , Λ  and G  become insignificant and 

2

1
t

ρ ∝ . For 1
4

n = , 
2

1
t

ρ ∝  and G is constant and cosmological constant is zero. Λ  is decreasing 

function of time t . For 0n <  and 1
4

n > , Λ  is non-negative; whereas for 10
4

n< < , Λ  is negative. 

For 0n < , G<0 for all t  and as t → ∞ , the gravitational constant become constant. For 
1 10 ( )
2 4

n n< ≤ ≠ , G>0 for all t . In the range 10
4

n< < , the behavior of G is similar to the above; 

whereas, G is increasing monotonically as t  increases. For 1
2

n > , G becomes insignificant for 
1

(4 1)2(2 1) nnt t β
α

−

∗

 −
= =  

 
. For 0 t t∗< <  , G is negative. For t t∗> , G is non-negative and increases 

monotonically afterwards. 
Case V: 1ω = − . In this case, ρ δ=  is constant and Λ  and G  diverge. This corresponds to static 
universe with dark energy. 

Case VI: 1
3

ω = . In this case, nX t= , (1 3 )n nA t tα β −= + , 4
4 3nt t

δρ
α β

=
 + 

, Λ =

(4 1)

2 (4 1)

3 (8 3) 2(2 1)

4

n

n

n n t n

t t

α β

α β

−

−

 − + − 
 + 

 and 

1
(4 1) (4 1)3

2
3

9 2(1 2 )

32

n nn t t n
G

t

α β α β

πδ

− −   + + −   = . For 0n = , Λ  and 

G  become insignificant and 
4 3

1
t

ρ ∝ . For 1
4

n = , 
4 3

1
t

ρ ∝  and G is non-negative and a decreasing 

function of time t ; whereas cosmological constant is negative and decreases square of time t . Λ  is 

decreasing function of time t and non-negative for 0n <  and 1
2

n ≥ ; whereas for 10
2

n< ≤ , Λ  is 

negative. In the range 3 1
8 2

n< < , Λ  becomes insignificant for 

1
(4 1)2(2 1)

(8 3)

nnt t
n

β
α

−

∗

 −
= =  − 

 and increases 
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monotonically afterwards. For 3 ( 0)
8

n n≤ ≠ , G is decreasing function of time t ; whereas for 3 1
8 2

n< < , 

G increases monotonically for all t . For 1
2

n ≥ , the behavior of G is similar to case-III given above. 

4   Conclusion 

In the previous sections we have presented five dimensional Kaluza-Klein cosmological models with a 
variable gravitational constant G and cosmological constant Λ  and discussed six different cases for the 
particular value of w , α  and β . 

We obtain the class of cosmological models where gravitational constant G is increasing or decreasing 
with time t . The cosmological constant Λ  decreases with time t  in all cases, which is supported by 

results from recent supernovae Ia observations [8]. In case I, for the particular value of 1
( 3)

n
m

=
+

, we 

retrieve the cosmological model obtained by Baysal and Yilmaz [30]. 
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