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Abstract A new class of a spatially homogeneous and anisotropic Bianchi type V cosmological
models of the universe for viscous fluid distribution within the framework of general relativity is
investigated by applying suitable functional form for the Hubble parameter H which yields models
of the universe that describe an early deceleration and late time acceleration. We have found that
cosmological term Λ being very large at initial times relaxes to a genuine cosmological constant at
late times. The physical and kinematical parameters of the models are discussed. The models are
found to be compatible with the results of recent observations.
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1 Introduction

The prediction of standard cosmology that the universe at present is decelerating is contradictory to
the recent observational evidences of the high red-shift of type Ia supernovae [1,2,3,4,5,6] and observed
data from measurements of the fluctuations in the power spectrum of the cosmic microwave background
[7,8,9,10]. So within the framework of Einstein’s general relativity, the cosmic matter energy should
contain, besides baryons, photons, neutrinos and dark matter, another contribution, known as dark energy,
which is the source of repulsive gravity. The kinematic effect of dark energy could be equivalent to that of
a fluid with negative pressure. Also, at the present era, dark energy dominates over matter and violates
the strong energy condition. As the fundamental physical nature of dark energy is unknown, several
models for dark energy have been proposed, namely the cosmological constant, quintessence scalar fields,
techyonic fluids, generalized forces etc. [11,12,13,14].

The simplest explanation of dark energy is provided by the cosmological constant Λ, but it needs to
be severely fine-tuned due to the problem associated with its energy scale. The vacuum energy density
observed today falls below the value of the vacuum energy density predicted by quantum field theory
by many order of magnitude [15]. Moreover, matter and radiation energy densities of the expanding
universe falls off as R−3 and R−4 respectively, where R is the scale factor of the universe, while Λ remains
constant. A possible way out of the trouble is to consider a varying cosmological term especially time
dependent, which as long as the universe expands, decays from a huge value at initial times to the small
value observed nowadays [16,17,18,19,20].

The distribution of matter can be satisfactorily described by a perfect fluid due to the large scale
distribution of galaxies in our universe. However, observed physical phenomena such as the large entropy
per baryon and the remarkable degree of isotropy of the cosmic microwave background radiation, suggest
the analysis of dissipative effects in cosmology. Furthermore, there are several processes which are
expected to give rise to viscous effects. These are the decoupling of neutrinos during the radiation era
and the decoupling of radiation and matter during the recombination era. Bulk viscosity is associated
with the GUT phase transition and string creation. Weinberg [21] derived general formula for bulk and
shear viscosity and used these to evaluate the rate of cosmological entropy production. He deduced
that the most general form of the energy momentum tensor allowed by rotational and space-inversion
invariance, contains a bulk viscosity term proportional to the volume expansion of model. Misner [22,23]
has investigated the effect of viscosity on the evolution of cosmological models. Viscous universe without
initial singularity has been studied by Nightingale [24], Heller and Klimek [25]. Roy and Prakash [26]
have studied a plane symmetric cosmological models representing a viscous fluid with free gravitational
field of non-degenerate Petrov type-I in which coefficient of shear viscosity is constant. Bali and Jain

224
Advances in Astrophysics, Vol. 1, No. 3, November 2016 

https://dx.doi.org/10.22606/adap.2016.13007

AdAp Copyright © 2016 Isaac Scientific Publishing



[27,28] have studied some expanding and shearing viscous fluid cosmological models in which coefficient
of shear viscosity is proportional to the rate of expansion in the model and the free gravitational field is
Petrov type D and non-generate. Grøn [29] has reviewed viscous cosmological model and deduced that
viscosity plays an important role in the process of isotropization of universe. The effect of bulk viscosity
on the cosmological evolution has been investigated by a number of workers in the framework of general
theory of relativity [30,31,32,33,34,35,36].

A number of recent observational data suggest that this accelerating phase of the universe is a recent
phenomena. So, it is natural to assume that dark energy was insignificant in the early evolution of the
universe while it has the dominant contribution at the present accelerating epoch. The transition from
a decelerated phase to an accelerated stage of evolution can be due to the domination of dark energy
over the other kinds of matter fields. It deserves mention that the same model universe should have
decelerating expansion in the early phase of matter era to allow the formation of large structures. To
investigate a cosmological scenario with initial deceleration and late time acceleration, authors have
proposed several ansatz. Singh [37] studied a cosmological model by assuming a functional relation
between Hubble parameter H and average scale factor R. Pradhan et al. [38] investigated cosmological
models assuming scale factor as an increasing function of cosmic time.

In this work, we assume a relation between Hubble parameter H and cosmic time t as

H = m+ n coth t, (1)

where m and n are positive constants. This form of Hubble’s parameter H as a function of cosmic time
‘t’, we propose is ad hoc in the sense that it is derived from the desired behaviour of the universe, rather
than from a known field theory. Berman [39] also studied cosmological models proposing a variation law
for the Hubble’s parameter without specifying the physics behind such a choice which yields a constant
value of decelerating parameter.

2 Metric and Field Equations

Bianchi type V space-time in orthogonal form is represented by the line-element

ds2 = −dt2 +A2(t)dx2 + e2αx {B2(t)dy2 + C2(t)dz2} , (2)

where α is constant. Viscous fluid is represented by the energy momentum tensor

Ti
j = (ρ+ p̄)vivj + p̄gi

j − 2ησij , (3)

where p̄ is the effective pressure given by
p̄ = p− ζvi;i (4)

We assume that the cosmic fluid satisfies linear equation of state

p = ωρ, 0 ≤ ω ≤ 1. (5)

Here ρ is matter energy density, p, the isotopic pressure, η and ζ are coefficients of shear and bulk viscosity
respectively, vi is the flow vector of the fluid satisfying vivi = −1 and σij is the shear tensor given by

σij = 1
2(vi;khkj + vj;kh

k
i )− 1

3θhij , (6)

where hij = gij + vivj is the projection tensor. Semi-colon (;) stands for covariant derivative. We choose
the coordinates to be co-moving, so that

v1 = v2 = v3 = 0, v4 = 1. (7)

The Einstein’s field equations (in geometrical units 8πG = c = 1) with time varying cosmological term
Λ(t) are given by

Rji −
1
2Rg

j
i = −T ji + Λ(t)gji . (8)
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The field equations for viscous fluid distribution reduce to

p− (ζ − 2
3η)θ − Λ = α2

A2 −
B̈

B
− C̈

C
− ḂĊ

BC
+ 2η Ȧ

A
, (9)

p− (ζ − 2
3η)θ − Λ = α2

A2 −
C̈

C
− Ä

A
− ĊȦ

CA
+ 2η Ḃ

B
, (10)

p− (ζ − 2
3η)θ − Λ = α2

A2 −
Ä

A
− B̈

B
− ȦḂ

AB
+ 2η Ċ

C
, (11)

ρ+ Λ = −3α2

A2 + ȦḂ

AB
+ ḂĊ

BC
+ ȦĊ

AC
, (12)

2Ȧ
A

= Ḃ

B
+ Ċ

C
. (13)

From equations (9)-(13), we obtain

ρ̇+ (ρ+ p̄)
(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)
+ Λ̇ = 4ησ2. (14)

where σ is shear scalar given by
σ2 = 1

2σijσ
ij . (15)

We define the average scale factor S for Bianchi type V space-time as

S3 = ABC. (16)

Generalized Hubble parameter H and generalized deceleration parameter q are defined as

H = Ṡ

S
= 1

3(H1 +H2 +H3), (17)

q = − Ḣ

H2 − 1 = 2− 3V V̈
V̇ 2

, (18)

where H1 = Ȧ
A , H2 = Ḃ

B and H3 = Ċ
C are directional Hubble’s factors along x, y and z directions

respectively and V is the spatial volume given by

V = S3. (19)

Volume expansion θ and components of shear tensor σji for the metric (2) are obtained as

θ = 3H = 3 Ṡ
S
, (20)

σ1
1 = H1 −H,σ2

2 = H2 −H,σ3
3 = H3 −H,σ4

4 = 0. (21)

Shear scalar σ is given by

σ2 = 1
6

[(
Ȧ

A
− Ḃ

B

)2

+
(
Ḃ

B
− Ċ

C

)2

+
(
Ċ

C
− Ȧ

A

)2]
. (22)

Equations (10), (11) with the help of (13) give

B̈

B
− C̈

C
+
(
Ḃ

B
− Ċ

C

){
1
2

(
Ḃ

B
+ Ċ

C

)
+ 2η

}
= 0. (23)

On integration, it leads to
Ḃ

B
− Ċ

C
= 2k
S3 e

−2
∫
ηdt, (24)
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k being constant of integration. From equations (13), (17) and (24), we get

Ȧ

A
= Ṡ

S
, (25)

Ḃ

B
= Ṡ

S
+ k

S3 e
−2
∫
ηdt, (26)

Ċ

C
= Ṡ

S
− k

S3 e
−2
∫
ηdt. (27)

Equations(9)-(14) can be written in terms of H, σ and q as

p̄− Λ = (2q − 1)H2 − σ2 + α

S2 , (28)

ρ+ Λ = 3H2 − σ2 − 3 α
S2 , (29)

ρ̇+ 3(ρ+ p̄)H + Λ̇ = 4ησ2. (30)

From equations (28) and (29), we get

dθ
dt = −θ2 + 3

2(ρ− p) + 3
2ζθ + 3Λ+ 6α

2

S2 , (31)

which is the Raychaudhuri equation for the given distribution. We observe that a positive Λ and bulk
viscosity increases the rate of expansion. Shear viscosity does not influence the mean expansion rate. It is
also to mention that in the background of Bianchi type V space time the mean expansion rate is higher
in comparison to Bianchi type I space time.

For the Zel’dovich fluid ρ = p, equation (31) reduces to

θ̇ + θ2 − 3
2ζθ − 3Λ− 6α

2

S2 = 0, (32)

which is the equation in isotropic case.

3 Solution and Discussion

For the assumption (1), scale factor S, spatial volume V , expansion scalar θ and deceleration parameter
q are obtained as

S = (sinh t)nemt, (33)

V = (sinh t)3ne3mt, (34)

θ = 3(m+ n coth t), (35)

q = −1 + n

(m sinh t+ n cosh t)2 . (36)

We observe that scale factor S is zero at t = 0 and expansion scalar θ is infinite at t = 0, which shows
that the universe starts evolving with zero volume at t = 0 with a big-bang. As t increases, the scale
factor S increases whereas volume expansion θ decreases. At t = 0, q = −1 + 1

n > 0 provided 0 < n < 1
and for t =∞, q = −1. Thus the model universe represents initial decelerating and late time accelerating
expansion.

In order to obtain analytical models, we consider specific form of shear viscosity η and bulk viscosity
ζ in the following models:
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3.1 Model I

We consider that η = η0 and ζ = ζ0 are constants. For this assumption, equations (25) and (26) become

Ȧ

A
= Ṡ

S
, (37)

Ḃ

B
= Ṡ

S
+ k

S3 e
−2η0t, (38)

Ċ

C
= Ṡ

S
− k

S3 e
−2η0t. (39)

In this case, shear scalar σ comes out to be

σ = k

S3e2η0t
. (40)

Matter density ρ, cosmological term Λ and shear scalar σ for the model are given by

(1 + ω)ρ =2n csch2t− 2k2

(sinh t)6ne(6m+4η0)t

− 2α2

(sinh t)2ne2mt + 3(m+ n coth t)ζ0,

(41)

Λ =3(m+ n coth t)2 − 2n csch2t

(1 + ω) + (1− ω)k2

(1 + ω)(sinh t)6ne(6m+4η0)t

− (1 + 3ω)α2

(1 + ω)(sinh t)2ne2mt −
3(m+ n coth t)2

(1 + ω) ζ0,

(42)

σ = k

(sinh t)3ne(3m+2η0)t . (43)

We observe that matter density ρ, cosmological term Λ and shear σ all diverge at t = 0. The model starts
with a big-bang from its singular state at t = 0 and continues to expand till t =∞. In the limit of large
times, ρ→ 3(m+n)ζ0

1+ω , Λ→ 3(m+ n)2 − 3(m+n)ζ0
1+ω and σ → 0. The presence of bulk viscosity is to increase

the value of matter density ρ and to decrease the value of vacuum energy density Λ. We also observe
that presence of bulk viscosity prevents the model tending to a de Sitter universe and matter density to
become negligible asymptotically. For the model, expansion anisotropy

σ

θ
= k

3(m+ n coth t)(sinh t)3ne(3m+2η0)t . (44)

We observe that σ
θ is infinite at initial epoch and for large values of t, σ

θ → 0. Therefore, the model
approaches isotropy at late times. We notice that the presence of shear viscosity accelerates the process
of isotropization.

3.2 Model II

We assume
η = 1

η0 + t
(45)

and
ζ = 1

ζ0 + t
, (46)

where η0 and ζ0 are constants [40]. For this assumption, we obtain

Ȧ

A
= Ṡ

S
, (47)
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Ḃ

B
= Ṡ

S
+ k

S3(η0 + t)2 , (48)

Ċ

C
= Ṡ

S
− k

S3(η0 + t)2 . (49)

Therefore,
σ = k

S3(η0 + t)2 . (50)

Matter density ρ, cosmological term Λ and shear scalar σ for the model take the form

(1 + ω)ρ =2n csch2t− 2k2

(sinh t)6ne6mt(η0 + t)4

− 2α2

(sinh t)2ne2mt + 3(m+ n coth t)
(ζ0 + t) ,

(51)

Λ =3(m+ n coth t)2 + (1− ω)k2

(1 + ω)(sinh t)6ne6mt(η0 + t)4

− (1 + 3ω)α2

(1 + ω)(sinh t)2ne2mt −
2n csch2t

(1 + ω) −
3(m+ n coth t)
(1 + ω)(η0 + t) ,

(52)

σ = k

(sinh t)3ne3mt(η0 + t)2 . (53)

The model starts expanding with a big-bang at t = 0. At t = 0, ρ, Λ and σ are all infinite but η = 1
η0

and
ζ = 1

ζ0
. For large values of t, ρ, η, ζ and σ become zero whereas Λ→ 3(m+n)2. We find that cosmological

term Λ is a decaying function of time and it approaches a small value at late times. This is in agreement
with the recent results from supernovae Ia observations. We observe that our model tends asymptotically
to de Sitter universe with H =

√
Λ
3 = m+ n for the large t. Viscous effect in the model vanishes at late

times. For the model
σ

θ
= k

3(m+ n coth t)(sinh t)3ne3mt(η0 + t)2 . (54)

For the large values of t, σθ → 0 implying that the model approaches isotropy at late times. It is interesting
to note that the σ

θ decreases faster with time due to the presence of shear viscosity. Therefore, one
concludes that viscosity plays an important role in the isotropization process of the large scale structure
of the universe.

3.3 Model III

We assume the form of coefficient of shear viscosity η given by Saha [41]

η = 3η0
Ṡ

S
, η0 = costant (55)

and coefficient of bulk viscosity ζ [42] in the form

ζ = ζ0 + ζ1
Ṡ

S
+ ζ2

S̈

S
, (56)

ζ0, ζ1 and ζ2 being constants.
For this choice, equations (25)-(27) become

Ȧ

A
= Ṡ

S
, (57)

Ḃ

B
= Ṡ

S
+ k

S3+6η0
, (58)
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Ċ

C
= Ṡ

S
− k

S3+6η0
. (59)

Therefore
σ = k

S3+6η0
. (60)

Shear scalar σ and coefficient of shear viscosity η for the model are given by

σ = k

(sinh t)(3+6η0)ne(3+6η0)mt , (61)

η = 3η0(m+ n coth t). (62)

From equations(35) and (61), we get

σ

θ
= k

3(m+ n coth t)(sinh t)(3+6η0)ne(3+6η0)mt . (63)

We observe that the model starts with a big-bang from its singular state at t = 0 with σ and η all
infinite. In the limit of large times, σ → 0 and η → 3η0(m+ n). Coefficient of shear viscosity tends to a
genuine constant for large values of t. At t = 0, σθ = ∞ and for t → ∞, σθ → 0. Therefore, the model
approaches isotropy at late times. The shear viscosity is found to be responsible for faster removal of
initial anisotropies in the universe. We discuss the model for different cases of bulk viscosity.

Case 1: ζ0 6= 0 and ζ1 = ζ2 = 0.
For this choice, we obtain matter density ρ, cosmological term Λ and coefficient of bulk viscosity ζ as

(1 + ω)ρ =2n csch2t− 2k2

(sinh t)(6+12η0)ne(6+12η0)mt −
2α2

(sinh t)2ne2mt

+ 3(m+ n coth t)ζ0.

(64)

Λ =3(m+ n coth t)2 − 2n csch2t

1 + ω
− (1 + 3ω)α2

(1 + ω)(sinh t)2ne2mt

+ (1− ω)k2

(1 + ω)(sinh t)(6+12η0)ne(6+12η0)mt −
3(m+ n coth t)

1 + ω
ζ0.

(65)

ζ = ζ0. (66)

The model has singularity at t = 0. Matter density ρ and cosmological term Λ are infinite at the initial
singularity. In the limit of large times (i.e.t → ∞), ρ → 3(m+n)ζ0

(1+ω) and Λ → 3(m + n)2 − 3(m+n)ζ0
(1+ω) .

Cosmological term Λ tends to a genuine constant for large values of t. Presence of bulk viscosity prevents
the matter density ρ to become negligible for large t .

Case 2: ζ1 6= 0 and ζ0 = ζ2 = 0.
For this assumption, we obtain ρ, Λ and ζ as

(1 + ω)ρ =2n csch2t− 2k2

(sinh t)(6+12η0)ne(6+12η0)mt −
2α2

(sinh t)2ne2mt

+ 3(m+ n coth t)2ζ1,

(67)

Λ =3(ω + 1− ζ1)(m+ n coth t)2

1 + ω
− 2n csch2t

1 + ω
+ (1− ω)k2

(1 + ω)(sinh t)(6+12η0)ne(6+12η0)mt

− (1 + 3ω)α2

(1 + ω)(sinh t)2ne2mt ,

(68)

ζ = ζ1(m+ n coth t) (69)
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This model has singularity at t = 0. It evolves from its singular state at t = 0. Matter density ρ,
cosmological term Λ and coefficient of bulk ζ are infinitely large at the beginning of cosmic evolution.
In the limit of large times, ρ→ 3(m+n)2

(1+ω) ζ1, Λ→ 3(m+n)2(1+ω−ζ1)
(1+ω) and ζ → ζ1(m+ n). The bulk viscosity

coefficient being infinitely large at the initial singularity decreases with time. We find that the cosmological
term Λ is very large at initial time and reduces to a constant at late times. In this case also, matter
density attains a constant value at late times on account of presence of bulk viscosity.

Case 3: ζ0 6= 0, ζ1 6= 0 and ζ2 = 0.
In this case, we get ρ, Λ and ζ as

(1 + ω)ρ =2n csch2t− 2α2

(sinh t)2ne2mt −
2k2

(sinh t)(6+12η0)ne(6+12η0)mt

+ 3(m+ n coth t)[ζ0 + ζ1(m+ n coth t)],
(70)

Λ =3(ω + 1− ζ1)(m+ n coth t)2

1 + ω
− 2n csch2t

1 + ω
+ (1− ω)k2

(1 + ω)(sinh t)(6+12η0)ne(6+12η0)mt

− (1 + 3ω)α2

(1 + ω)(sinh t)2ne2mt −
3(m+ n coth t)

1 + ω
ζ0,

(71)

ζ = ζ1 + ζ1(m+ n coth t). (72)

This model also starts expanding with a big-bang at t = 0 with ρ , Λ and ζ all infinite. For the large
value of t, ρ→ 3(m+n)

(1+ω) [ζ0 + ζ1(m+ n)], Λ→ 3(m+ n)2− 3(m+n)
(1+ω) [ζ0 + ζ1(m+ n)] and ζ → ζ0 + ζ1(m+ n).

Coefficient of bulk viscosity tends to a genuine constant for large values of t. We find that the presence of
bulk viscosity is to increase the value of matter density ρ and to decrease the value of vacuum energy
density Λ.

Case 4: ζ0 6= 0, ζ1 6= 0 and ζ2 6= 0.
For this choice, we obtain ρ, Λ and ζ as

(1 + ω)ρ =n csch2t [2− 3ζ2(m+ n coth t)]− 2α2

(sinh t)2ne2mt −
2k2

(sinh t)(6+12η0)ne(6+12η0)mt

+ 3(m+ n coth t)[ζ0 + ζ1(m+ n coth t) + ζ2(m+ n coth t)2],
(73)

Λ =3(ω + 1− ζ1)(m+ n coth t)2

1 + ω
+ (1− ω)k2

(1 + ω)(sinh t)(6+12η0)ne(6+12η0)mt

− n csch2t [2− 3ζ2(m+ n coth t)]
1 + ω

− (1 + 3ω)α2

(1 + ω)(sinh t)2ne2mt

−
3(m+ n coth t)

[
ζ0 + ζ2(m+ n coth t)2]
1 + ω

,

(74)

ζ = ζ0 + (m+ n coth t) [ζ1 + ζ2(m+ n coth t)]− ζ2n csch2t. (75)

We also observe that the model starts with a big-bang from its singular state t = 0 with ρ, Λ and
ζ all infinite. In the limit of large times(i.e.t → ∞), ρ = 3(m+n)

(1+ω) [ζ0 + ζ1(m + n) + ζ2(m + n)2], Λ =
3(ω+1−ζ1)

1+ω (m+ n)2 − 3(m+n)
(1+ω) [ζ0 + ζ2(m+ n)2] and ζ = ζ0 + (m+ n)[ζ1 + ζ2(m+ n)]. We also find that

the cosmological term Λ is very large at initial time and relaxes to a small value at late times. In the
presence of bulk viscosity, matter density ρ increases and vacuum energy density Λ decreases with time.
Coefficient of bulk viscosity tends to a genuine constant for large values of t. Because of bulk viscosity,
matter density does not become negligible and the model does not tend to a de Sitter universe for large
values of t.
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3.4 Model IV

We consider
η = 3η0

Ṡ

S
(76)

and
ζ = ζ0ρ, (77)

where ζ0 is constant [43]. In this case, we obtain ρ, Λ and ζ as

[1 + ω + 3ζ0(m+ n coth t)] ρ =2n csch2t− 2α2

(sinh t)2ne2mt

− 2k2

(sinh t)(6+12η0)ne(6+12η0)mt ,

(78)

Λ =3(m+ n coth t)2 − 2n csch2t

1 + ω + 3ζ0(m+ n coth t)

+
[

1− ω − 3ζ0(m+ n coth t)
1 + ω + 3ζ0(m+ n coth t)

]
k2

(sinh t)(6+12η0)ne(6+12η0)mt

−
[

1 + 3ω + 9ζ0(m+ n coth t)
1 + ω + 3ζ0(m+ n coth t)

]
α2

(sinh t)2ne2mt ,

(79)

[
1 + ω + 3ζ0(m+ n coth t)

ζ0

]
ζ =2n csch2t− 2α2

(sinh t)2ne2mt

− 2k2

(sinh t)(6+12η0)ne(6+12η0)mt .

(80)

We observe that the model starts with a big-bang from its singular state t = 0 with ρ , Λ and ζ all infinite.
In the limit of large times, ρ and ζ become zero but Λ → 3(m + n)2. We find that cosmological term
Λ is a decaying function of time and it approaches a small value at late times. Thus, our model tends
asymptotically to a de Sitter universe with H =

√
Λ
3 = m+ n for large values of t. Time evolutions of

some cosmological parameters are shown graphically in Figures[1–18].
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Figure 1. Variation of spatial volume V , expansion
scalar θ and deceleration parameter q with cosmic time
t.
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Figure 4. Variation of vacuum energy density Λ with
cosmic time t in Model I.
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Figure 5. Variation of expansion anisotropy σ
θ

with
cosmic time t in Model II.
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Figure 6. Variation of matter energy density ρ with
cosmic time t in Model II.
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Figure 7. Variation of vacuum energy density Λ with
cosmic time t in Model II.
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Figure 8. Variation of expansion anisotropy σ
θ

with
cosmic time t in Model III.
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Figure 9. Variation of matter energy density ρ with
cosmic time t in model III (case 1).
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Figure 10. Variation of vacuum energy density Λ with
cosmic time t in model III ( case 1).
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Figure 11. Variation of matter energy density ρ with
cosmic time t in model III (case 2).

0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8

10

Time t

Λ

 

 

ω=0

ω=1/3

ω=1

Figure 12. Variation of vacuum energy density Λ with
cosmic time t in model III ( case 2).
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Figure 13. Variation of matter energy density ρ with
cosmic time t in model III (case 3).
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Figure 14. Variation of vacuum energy density Λ with
cosmic time t in model III ( case 3).
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Figure 15. Variation of matter energy density ρ with
cosmic time t in model III (case 4).
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Figure 16. Variation of vacuum energy density Λ with
cosmic time t in model III ( case 4).
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Figure 17. Variation of matter energy density ρ with
cosmic time t in model IV.
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Figure 18. Variation of vacuum energy density Λ with
cosmic time t in model IV.

4 Conclusion

In this paper, we have presented four models of Bianchi type V cosmological solutions to field equations
with viscous fluid in the presence of a cosmological term Λ in general relativity. Cosmological models
have been obtained by assuming a functional form for Hubble parameter which yields a model of the
universe that represents initially decelerating and late time accelerating expansion. The evolution of
the universe in such a scenario is shown to be consistent with the present observations predicting an
accelerated expansion. We observe that the model approaches isotropy for large values of t and presence
of shear viscosity accelerates the isotropization process. Cosmological term Λ being very large at initial
times relaxes to a genuine cosmological constant asymptotically. The proposed functional form for Hubble
parameter H produces cosmological models that give the desired behavior of the universe.
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