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Abstract. Analytical and numerical studies are presented for electron acoustic solitary wave 
structure in relativistic degenerate two-component unmagnetized astrophysical plasma. The existence 
of a wave mode of pure quantum origin is predicted. The effect of various plasma parameters on the 
conditions of existence and properties of solitary wave is investigated. It is shown that depending on 
the values of plasma parameters both rarefactive and compressive type of solitons can exist. It is 
observed that the amplitude and width of the solitons are significantly affected by the quantum and 
relativistic effects. The relativistic effects arising out of streaming motion is treated by Eulerean 
formulation whereas the relativistic degeneracy effects is investigated by making use of 
Chandrasekhar formula. 
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1   Introduction 

In recent years there has been a great deal of interest in studying the different aspects of nonlinear wave 
propagation in quantum plasma. Traditional plasma physics has mainly focused on regimes 
characterized by high temperature and low density where quantum effects have virtually no impact. But 
in plasmas where the density is quite high and the temperature is very low thermal de Broglie 
wavelength of electrons may become comparable to the spatial scales of the system and then quantum 
nature of the plasma constituents cannot be neglected and quantum effects could affect the plasma 
behavior in a significant way. The condition is well satisfied in some compact astrophysical objects (e.g. 
white dwarfs, neutron stars, magnetars etc.), also in metals, semiconductors and laser produced plasmas 
so that such phenomenon may be observed. The matter exists in extreme conditions of density. In such 
situation the average inter-Fermion distance is comparable to or less than the thermal de Broglie 
wavelength and hence quantum degeneracy effects become important. Quantum effect arises due to 
overlapping of the wavefunctions of the neighboring particles. In quantum plasmas where the electron 
thermal energy is much smaller than their Fermi energy the statistical behavior of plasma particles 
should be described by Fermi-Dirac statistics and not by the classical Boltzmann statistics. Such 
quantum plasmas may be found in a variety of environments such as metal nanostructures [1], 
astrophysical system [2], ultra-small electronic devices [3,4], biophotonics [5], cool vibes [6] , neutron 
stars [7], laser produced plasmas [8], quantum wells and quantum diodes [9,10].  

Most of the investigations on nonlinear wave propagation in quantum plasma are confined to the non-
relativistic case. But when the electron or ion velocity approaches the speed of light relativistic effect 
may significantly modify the nonlinear behavior of electron plasma waves. Relativistic plasma can be 
formed in many practical situations, e.g. in space-plasma phenomena [2, 7], the plasma sheet boundary 
of earth’s magnetosphere [11, 12], van Allen radiation belts [13] and laser-plasma interaction 
experiments [14, 15]. The relativistic motion in plasmas is also assumed to exist during the early period 
of evolution of the universe [16]. Regarding the relativistic effects on ion-acoustic solitary waves a 
number of works have been reported for classical plasma. For example, Saeed et al [17] have shown that 
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in electron-positron-ion plasma increase in the relativistic streaming factor causes the soliton amplitude 
to thrive and its width shrinks. El-Labany et al [18] have shown that relativistic effect can modify the 
condition of modulational instability of ion-acoustic waves in a warm plasma with nonthermal electrons. 
Regarding the relativistic effects on electron plasma waves only a very few works can be found in the 
literature. Recently Bharuthram and Yu [19] have shown that relativistic electron plasma waves can 
propagate as quasi-stationary nonlinear waves as well as solitary waves. So far all the works on the 
relativistic effects on plasma waves have been reported for classical plasma. In course of the interesting 
developments of quantum effects in plasma it is natural to investigate whether the combined effects of 
relativity and quantum mechanics can display some properties of plasma. Relativistically degenerate 
dense plasmas can be found in many astrophysical environments including interiors of white dwarf stars 
[20] and magnetars [21]. Thus it is important to investigate the relativistic and quantum mechanical
effects in a combined way on the nonlinear wave structure in plasma.

The inclusion of quantum-mechanical effects in plasma requires new mathematical formulation or a 
suitable modification of the formulations used in classical situations. Quantum effects in plasmas are 
usually studied with the help of two well-known formulations, viz. the Wigner-Poisson and the 
Schrödinger-Poisson formulations. The Wigner-Poisson model is often used in the study of quantum 
kinetic behavior of plasma. The Schrodinger-Poisson model describes the hydrodynamic behavior of 
plasma particles in quantum scales. It can be considered as the quantum analog of the fluid model of 
traditional plasma. The quantum hydrodynamic (QHD) model is derived by taking velocity-space 
moments of the Wigner equations as in the classical fluid model. This model consists of a set of 
equations describing the transport of charge, momentum and energy in a charged particle system 
interacting through a self-consistent electrostatic potential. The QHD model generalizes the fluid model 
for plasma with the inclusion of a quantum correction term also known as the Bohm potential [22]. The 
model incorporates quantum statistical effects through an equation of state. The quantum corrections 
may give rise to new aspects of purely quantum origin in the collective behavior of plasma at quantum 
scale. For example, it may lead to the generation of new wave modes in plasma [23]. Because of 
simplicity, straight forward approach and numerical efficiency the QHD model has been widely used by 
several authors [24-31] in dealing with different aspects of linear and nonlinear wave propagation in 
unmagnetized quantum plasmas. For example, using the QHD model Haas et al [22] have studied the 
important role of quantum diffraction in linear as well as nonlinear regimes for the propagation of ion 
acoustic waves; Gardner and Ringhofer [24] has studied the electron-hole dynamics in semiconductors. 
Using the same model Shukla and Eliasson [25] have studied the dynamics and formation of dark soliton 
and vortices in quantum plasma. It has also been used to study the Korteweg deVries (KdV) solitary 
wave structure for ion acoustic waves [26, 27], electron-acoustic waves [28], dust-acoustic waves and dust 
ion-acoustic waves [29, 30]. Recently we have studied the effect of quantum diffraction on the electron 
plasma waves and it has been found that quantum effects can significantly modify the modulational 
instability conditions and the instability growth rates of finite amplitude electron plasma waves [31].  

There are practical situations such as intense laser-solid interaction experiments and presumably the 
early period of the evolution of the universe where both the quantum and relativistic effects may become 
important for consideration. The motivation of the present paper is to study the relativistic effect on the 
formation and characteristics of KdV solitary wave structure of plasma waves in a degenerate plasma 
including full ion dynamics. Using the one-dimensional quantum hydrodynamic (QHD) model for two 
component electron-ion dense quantum plasma we have studied the linear and nonlinear properties of a 
plasma wave mode of pure quantum origin including relativistic effects. Because of heavier mass 
quantum correction for ions is smaller than that for electrons. However to make a complete analytical 
study we have considered, unlike previous authors, quantum corrections for both the electrons and ions. 
It is shown that the relativistic effects can significantly change the linear and nonlinear properties of the 
waves in quantum plasma.  

The paper is organized in the following way: in section 2 the basic set of quantum hydrodynamic 
equations are presented including streaming motion; in section 2.1 the linear dispersion characteristics 
and existence of a wave mode of pure quantum origin is predicted; in section 2.2 the Korteweg deVries 
equation is derived by using the standard perturbation techniques. In section 3 the formulation for 
relativistic degeneracy is introduced and the basic set of equations are written, section 3.1 deals with the 
linear dispersion characteristics, in section 3.2 the solitary profiles are investigated. Section 4 gives a 
comparative study of these two kind of relativistic effects. 
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2  Basic Equations 

 We consider relativistic dense quantum plasma consisting of electrons and ions with a streaming motion 
along the x-axis. We also assume that the plasma particles behave as a one dimensional Fermi gas at 
zero temperature and therefore the pressure law [22] is: 
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2
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where =j e  for electron and =  j i  for ions; jm  is the mass; = 2 /B FjF jj kV T m  is the Fermi 

thermal speed, FjT  is the Fermi temperature and Bk  is the Boltzmann constant; jn  is the number 
density with the equilibrium value 0jn . The set of QHD equations describing the dynamics of the 
electron plasma waves in the model plasma under consideration are the following: 
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where ju , jq  and jp  are respectively the fluid velocity, charge and pressure of the thj  species, 

= −eq e , =iq e , ( )γ = −
1/22 21 /j ju c  is the relativistic factor, c is the velocity of light in free space, �  

is the Planck’s constant divided by π2  and φ  is the electrostatic wave potential. We now use the 
following normalization:  
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is the electron plasma oscillation frequency and FeV  is the Fermi thermal 

speed of electrons. The normalization gives us the following simplified set of equations for electrons and 
ions as: 
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where ω= � / 2 pe B FeH k T  is a nondimensional quantum parameter proportional to the quantum 
diffraction, = /e iµ m m  is the ratio of electron and ion mass and σ = /Fi FeT T  is the ratio of ion and 
electron Fermi temperatures. The quantum diffraction parameter H  is proportional to the ratio 
between the plasmon energy ω� pe  (energy of an elementary excitation associated with an electron 
plasma wave) and the Fermi energy B Fek T . The equations (5)-(9) constitute the basic set of quantum 
hydrodynamic equations to be used in the investigation of nonlinear propagation of electron plasma 
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waves in quantum plasma. Quantum effects are included in the model through the second and third 
terms on the R.H.S of equations (6) and (8). The second term on the RHS of Equations (6) and (8) 
include quantum statistical effect through the equation of state [Eq. (4)]. The third term in the RHS of 
Equations (6) and (8) arises due to quantum correction of density fluctuations and this type of quantum 
effect is called quantum diffraction or Bohm potential. 

2.1  Linear Dispersion Characteristics 

 In order to investigate the nonlinear behavior of plasma waves we make the following perturbation 
expansion for the field quantities en , eu , in , iu  and φ  about their equilibrium values: 
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Assuming that all the field quantities are varying as ω−( )i kx te , we get for normalized wave frequency 
ω  and wave number k , the following dispersion relation of electron plasma waves which includes 
quantum and relativistic effects for both electrons and ions: 

 

( ) ( )
µ

γ µ γ
ω γ ω γ σ

+ =

− − − − − −
2 4 2 2 4

2 22 20 0
0 3 0 3

1 1

4 4
H k H k

ku k ku k
  (11) 

where γ = +
2
0

3 2

3
1

2
u
c

 and γ = −
2
0

0 2
1

2
u
c

.  

In the dimensional form Eqn. (11) becomes: 
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Equation (11) is a quadratic equation in ω2 and has the solutions: 
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The discriminant ‘D’ in Equations (13) and (14) is always positive. Thus the solution for ω  has two 
positive branches indicating the existence of two distinct electrostatic wave modes. In order to extract 
more information regarding the behavior of these two wave modes we have studied them numerically. It 
is shown that the linear dispersion curve for the fast mode [represented by Eq. (13)] depends 
significantly on H  but is almost independent of σ . On the other the linear dispersion of the slow 
mode [represented by Eq. (14)] depends slightly on σ  and is almost independent of H . The 
dependence of linear dispersion relation on the streaming velocity for both slow and fast mode is shown 
in Fig. 1. The phase velocity of both modes increases with increase in streaming velocity. Figure 2 shows 
the dependence of slow mode on quantum diffraction parameter (H ) and ion-to-electron temperature 
ratio. It is found that quantum diffraction has no significant effect on linear dispersion properties, 
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whereas ion temperature has small but finite positive effect of increasing the frequency for a given 
wavenumber. 

 
Figure 1. Dependence of Fast and Slow modes on 
relativistic streaming velocity ( 0u ). 

 
Figure 2. Dependence of Slow mode on quantum 
diffraction parameter ( H ) and ion-to-electron 
temperature ratio (σ ). 

 
If we assume that the ions are infinitely heavy compared to the electrons (i.e. = 0µ ) then the wave 

branches (13) and (14) reduce respectively to: 
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In the dimensional form the frequencies of these two wave branches are given as: 
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Equation (17) corresponds to the dispersion relation for electron plasma waves including quantum 
diffractions and relativistic effects. The wave mode represented by Eq. (18) arises out of quantum 
statistical and relativistic effects. The fast mode corresponds to the usual electron plasma wave modified 
by quantum and relativistic effects. In the absence of the quantum diffraction (i.e. = 0H ) and 
relativistic effect dispersion relation (17) reduces to the well-known dispersion relation for electron 
plasma waves in classical plasma. The slow mode represented by (18) is of pure quantum origin and is 
caused by quantum statistical effect as is evident from the presence of the parameter σ . If both 
quantum statistical effect and relativistic effect are removed, the second mode vanishes. 

2.2  The KdV Equation 

In order to derive the desired KdV equation describing the nonlinear behavior of the plasma wave mode 
of pure quantum origin we use the standard reductive perturbation technique. We introduce the usual 
stretching of the space and time variables:  
 ξ ε τ ε= − =1/2 3/2( )    and   x Vt t   (19) 
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where V  is the linear long wave phase speed normalized by electron Fermi speed FeV  and ε  is a 
smallness parameter measuring the dispersion and nonlinear effects.  

Equations (5)-(9) are written in terms of the stretched coordinates ξ  and τ  and then the 
perturbation expansions (10) are substituted. Solving the lowest order equations with the boundary 
conditions that (1)

en , (1)
eu , (1)

in , (1)
iu  and φ →(1) 0  as ξ → ∞ , the following solutions are obtained: 
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Going for the next higher order terms in ε , after a few algebraic steps, the desired KdV equation is 
obtained: 

 φ φ φφ
τ ξ ξ
∂ ∂ ∂

+ + =
∂ ∂ ∂

3

3
0A B   (22) 

where  

 = = 32

1 1

  and  
FF

A B
F F

  (23) 

in which   

 

( )

α β
γ α γ β

µ µ

α α βσγ α β β γ α β α γ
µ µ µ

σγ
γ β µβ

µγ

    
= + + − +            
     
 = + + + + − + −             
  −

= − +   +   

1 3 0 3

2
2 2 2 2

2 3 0 3 1

2
3

3 0
3

( )

2( )

1
1 4

i i
e e

i i i
e e i e e e

e i

F V u

F V u

HF

  (24) 

α β α, ,e e i  and βi  are as defined earlier in equation (21) and γ = 0
1 2
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It is to be noted that the coefficients of the dispersive and nonlinear terms in the KdV equation (22) 
get modified by the quantum and relativistic effects. 

To find the steady state solution of Eq. (22) we transform the independent variables ξ  and τ  into 
one variable η ξ τ= −M  where M  is the normalized constant speed of the wave frame. Applying the 

boundary conditions that as η → ±∞ , φ φφ
η η
∂ ∂
∂ ∂

2

2
, , →0, the possible stationary solution of Eq. (22) is 

obtained as:  
 ( )φ φ η= ∆2secm h   (25) 

where the amplitude φm  and width ∆  of the soliton are given by: 

 φ = 3m M A   (26) 
and 
 ∆ = 4B M   (27) 

The solitary wave structure is formed due to a balance between dispersive and nonlinear effects. 
Relative strength of these two effects determines the characteristic of such solitary wave structure. The 
coefficients A  and B , corresponding to the nonlinear effect and dispersive effect respectively, play 
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crucial roles in determining the solitary wave structure. So it is important to study the dependence of 
these coefficients on different physical parameters. Numerical calculations show that the coefficient A  
increases with increases in σ . It is almost independent of quantum diffraction parameter H  and 
streaming velocity u0. The co-efficient B of the dispersion term decreases significantly with increase in 
σ  but increases slightly with increase in the streaming velocity 0u . The coefficient B  depends 
interestingly on H . It decreases as H is increased from zero and for certain critical value of H  (say 

cH ) it becomes zero. From equations (24) and (25) we get the critical value of H  as: 
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where γ 0  and γ 3  are as defined earlier. Numerically we find that the value of cH  increases with  
increase in 0u  and decrease in σ . This result is very similar to that previously reported for ion 
acoustic solitary excitations in quantum plasma [22]. 

In this section using the quantum hydrodynamic model and reductive perturbation technique we have 
derived the Korteweg de Vries equation including the relativistic variation of mass of electrons with 
velocity for investigating small amplitude solitons. The dependence of the solitary wave structure on 
different plasma parameters such as relativistic streaming factor, ion-to-electron temperature ratio are 
studied both analytically and numerically. It is found that only compressive solitons can exist depending 
upon the values of different plasma parameters. For >  cH H  compressive solitons are obtained (Fig. 
3).  

Regarding the dependence of the amplitude and width of the soliton on the streaming velocity it is 
found that the soliton amplitude is almost independent of steaming velocity 0u  but with increase in 
streaming velocity the width increases. The soliton amplitude is independent of quantum diffraction 
parameter H , but with increasing H  the width shrinks for compressive solitons [Fig 4]. 

 
Figure 3. Compressive solitons for different values of 
relativistic streaming velocity ( 0u ); = 2H ( > cH ), 
σ = 0.01  and = 0.1M . 

 
Figure 4. Compressive solitons for different quantum 
diffraction parameter (H ); =0 0.2u , σ = 0.01  and 

= 0.1M . 
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Figure 5. Compressive solitons for different ion to 
electron temperature ratio (σ ); = 1.5H , =0 0.2u  
and = 0.1M . 

 
Figure 6. Effect of relativistic streaming velocity ( 0u ) 
on the amplitude and width of compressive soliton 

= 1.5H , =0 0.2u , σ = 0.01  and = 0.1M . 
 

The dependence of soliton characteristics on ion to electron temperature ratio σ  is found to be 
significant. Both the amplitude and width of the solitons decrease significantly with increase in the 
value of σ  [Fig. 5]. Dependence of the solitary structure on the relativistic streaming factor is shown in 
Fig. 6 from which it is clear that relativistic effect slightly increases both the amplitude and width of the 
soliton.  

3   Effects of Relativistic Degeneracy: Chandrasekhar Treatment 

According to S. Chandrasekhar (1939) the electron degeneracy pressure in fully degenerate and 
relativistic configuration can be expressed in the following form: 
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 φ  ∂∂ ∂ ∂ ∂ ∂  + = − +   ∂ ∂ ∂ ∂ ∂ ∂   
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2

jj
j j j
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  (34) 

 ( )φ∂
= −

∂

2

2 e in n
x

  (35) 

where ( ) ( )χ= +2 2
0 0/ 3 1j j jF R R  is the term arising from relativistic pressure in weakly relativistic 

case, whereas for ultra relativistic case χ= 0 3j jF R  where χ = 2 2e B Fem c k T . Here =j e  for electrons 
and i  for ions. H  is the non-dimensional quantum diffraction parameter defined as ω= � / 2e B FeH k T , 
where FeT  is the Fermi temperatures for electrons; 0en  and 0in  are the equilibrium number densities 
electrons and ions respectively. The normalization has been carried out in the following manner: 

ω ω φ φ→ → → → 0/ ,   ,   / 2 ,   /e se e B Fe j j jx x c t t e k T n n n , → /j j su u c  

in which ω π= 2
04 /e e en e m  is the cold electron plasma frequency, = 2 /sh B Fe ec k T m  is the electron-

acoustic speed. It is to be noted that the parameter 0jR  is a measure of the relativistic effects and may 
be called relativistic degeneracy parameter. For ultra relativistic case �0 1jR  and for weakly relativistic 
case �0 1jR . The parameter 0jR  can also be related to mass density as ρ =3( / )gr cm  × ⋅6 3

01.97 10 jR  
[Akbari-Moghanjoughi (2011)]. The density of white dwarfs can be in the range ρ< <5 910 10 . So in 
this case, the relativity parameter Rj0 can be in the range < <00.37 8jR . 

3.1   Linear Dispersion Characteristics 

The dispersion relation for normalized wave frequency ω and wave number k, the following linear 
dispersion relation: 

 µ
µω ω

+ =
− − − −

2 4 2 2 4
2 2 2 2

1 1

4 4e i
H k H kF k Fk

  (36) 

where ( )χ= +2 2
0 01 3j j jF R R  in the weakly relativistic limit and χ= 0 3j jF R  in the ultra-relativistic 

case. 

 
ω

ω

 = + −  
 = − −  

2 2
1

2 2
2

4 2

4 2

B B C

B B C
  (37) 

where 
 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
µ

µ µ

= + + + +

= + + + + + +

2 2 4 2

2 2 4 2 2 2 4 2 2 4 2

/ 2 1

/ 4 / 4 / 4 1
e i

e i e i

B k F F H k

C k F H k k F H k k F F H k

  (38) 

It indicates that two stable linear modes for EAWs are possible when one considers inertial and 
relativistic effects of both electrons and ions. EAWs are high frequency electrostatic electron oscillations 
where the restoring force comes from the electron pressure and the ions provide the inertia. If we neglect 
the inertia of electrons and assume that the pressure is solely due to the ultra-relativistic electrons then 
the dispersion relation (12) reduces to: 

 
χ

ω
χ

+
= +

+ +

2 2 2 2 4
2 0

2 2 2
0

( 3 4)
41 ( 3 4)

e

e

k R H k H k
k R H k

  (39) 

In the long wavelength limit (i.e. → 0k ) 
 ω χ= 0 3ek R   (40) 

The long wave phase speed is: 
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 ω χ= =0 0/ 3eV k R   (41) 

It represents the long wave dispersion character of EAWs in quantum-relativistic plasma composed of 
inertia less electrons and inertial cold ions. We numerically examine the behavior of the dispersion 
relation (37) with respect to the variations of 0eR  and H . Fig. 7 shows the variation of ω  with k  
for different values of the relativity parameter 0eR . It shows that the wave frequency ω  increases with 
increase in the value of 0eR . Fig. 8 shows the ω − k  curves for different values of H . Obviously, the 
wave frequency ω  also increases with increase in H .  

 
Figure 7. Dispersion Curve for different values of the relativity parameter 0eR  

 
Figure 8. Dispersion Curve for different values of the quantum parameter H  

3.2   KdV Equation 

In order to study the nonlinear behavior of electron acoustic waves we consider inertia less hot ultra 
relativistic electrons, inertial cold electrons and stationary ions. The pressure effect is assumed to be 
only due to the hot electrons. This type of consideration has been made by many previous authors [33-
36]. Following the standard reductive perturbation technique we use the usual stretching of the space 
and time variables: 
 ξ ε τ ε= − =1 2 3 2

0( )  a nd   x V t t   (42) 

where 0V  is the normalized linear long wave phase velocity given by Eq. (42) and ε is the smallness 
parameter measuring the dispersion and nonlinear effects. Now writing the Equations (34)-(36) in terms 
of these stretched co-ordinates ξ  and τ  and then applying the perturbation expansion (43) and 
solving for the lowest order equation with the boundary condition that (1)

en , (1)
eu , (1)

en , (1)
eu  and φ (1)  → 

0 as ξ → ∞ , the following solutions are obtained: 
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 δφ δφ φ φ
= = = − = −

(1) (1) (1) (1)
(1) (1) (1) (1)

2 2
0 00 0

,   ,   ,   e e i in u n u
V VV V

  (43) 

Going for the next higher order terms in ε and following the usual method we obtain the desired 
Korteweg de Vries (KdV) equation: 

 φ φ φφ
τ ξ ξ
∂ ∂ ∂

+ + =
∂ ∂ ∂

3

3
0A B   (44) 

where 

 
( )χ

δ χ χ

−−
= − = − = =

2 24 2
00

0 00 0

3 2 / 42 / 43 3   and  
2 22 3 2 3

e

e e

R HV H
A B

V VR R
  (45) 

Using usual techniques and applying the boundary conditions that as η → ±∞ , φ φφ
η η
∂ ∂
∂ ∂

2

2
, , →0, the 

possible stationary solution of Eq. (45) is obtained as: 
 ( )φ φ η= ∆2secm h   (46) 

where the amplitude mphi  and width ∆  of the soliton are given by: 

 φ = 3m M A   (47) 
and 
 ∆ = 4B M   (48) 

The solitary wave structure is formed due to a delicate balance between dispersive and nonlinear 
effects. Relative strength of these two effects determines the characteristic of such solitary wave 
structure. The coefficients A  and B , corresponding to the nonlinear effect and dispersive effect play 
crucial roles in determining the solitary wave structure. There exists a critical value of Re0 for which the 
solitary structure vanishes given by:  
 χ=0( ) 3 2e c cR H   (49) 

 
Figure 9. Solitary Structures for different values of the relativity parameter 0eR  
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Figure 10. Solitary Structures for different values of the quantum parameter. 

 
In this section we have investigated using the one-dimensional quantum hydrodynamic model and the 

standard reductive perturbation technique both the linear and nonlinear properties of electron-acoustic 
waves in two-component relativistically degenerate plasma consisting of electrons and ions. A general 
type dispersion relation has been obtained including inertia and quantum relativistic effects of both 
electrons and ions. It is shown that two stable linear modes of propagation are possible for electron-
acoustic waves when one considers the inertia effect of both species. The wave frequency is shown to 
increase with the increase in the values of relativity parameter 0eR  and also the quantum diffraction 
parameter H .  

To study the nonlinear behavior of the wave a KdV equation has been derived in which the 
coefficients of the nonlinear and dispersive terms are found to get modified due to the inclusion of 
quantum relativistic effects. There exists a critical value of the relativistic degeneracy parameter 0ehR  
such that for ( )<0 0e e c

R R  no soliton solution is possible. This critical value of the degeneracy parameter 
is determined by the values of H . From Equations (46)- (49) it is obvious that the degenerate plasma 
under consideration supports only rarefactive solitary wave structures which are associated with 
negative potentials. Figure 9 shows electron-acoustic solitary profiles for different values of the 
relativistic degeneracy parameter 0eR  (which is directly proportional to the plasma number density) for 
fixed values of M  and H . It shows that both the amplitude and width of the soliton increase with 
increase of 0eR . Fig. 10 shows solitary structures for different values of H  keeping other parameters 
fixed. It shows that the soliton width increases with increase in the value of H  but its amplitude is 
independent of H . The amplitude of electron-acoustic solitary structure increases with increase in 0eR  
but it is independent of H . On the other hand the width of the soliton increases with increase in 0eR  
or H.  

4   Relativistic Drifts and Relativistic Degeneracy: A Comparison 

A comparison of these two kinds of relativistic effects is discussed. When the relativistic effects are due 
to streaming motion only compressive solitons are observed. The properties and dependence on 
streaming velocity u0, quantum diffraction H and ion temperature are discussed in section 5. In section 6 
the investigation of linear and nonlinear propagation characteristics of EAWs are carried out in 
relativistic degenerate dense plasma consisting of electrons and ions. It is shown that the plasma under 
consideration can support only rarefactive solitary waves under certain restricted regions of plasma 
parameters. The soliton properties are shown to depend significantly on the relativistic degeneracy 
parameter Re0 and also the quantum diffraction parameter H .  

The present investigation may be helpful in understanding the basic features of electron-acoustic 
waves in super dense astrophysical objects like white dwarfs, neutron stars as well as in the future 
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intense laser-solid plasma experiments where the relativistic electron degeneracy effects become 
important. 
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