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Abstract. A new non-singular, analytical theory with respect to the Earth’s zonal 
harmonic term J2 has been developed for short-periodic motion, by analytically integrating 
the uniformly regular KS canonical equations of motion using generalized eccentric anomaly 
‘E’ as the independent variable. Only one of the eight equations needs to be integrated 
analytically to generate the state vector, as a result of symmetry in the equations of motion, 
and the computation for the other equations is by changing the initial conditions. The 
integrals are much simpler than earlier obtained in [20] in terms of the independent variable 
‘s’. Numerical results indicate that the solution is reasonably accurate for a wide range of 
orbital parameters during a revolution. The error in computing the most important orbital 
parameter ‘semi-major axis’ which is the measure of energy is less than five percentage 
during a revolution. The analytical solution can have number of applications. It can be used 
for studying the short-term relative motion of two or more space objects. It can also be 
useful in collision avoidance studies of space objects. It can be used for onboard 
computation in the navigation and guidance packages, where the modeling of J2 effect 
becomes necessary. 
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1   Introduction 

The main problem in the artificial satellite theory is the motion of the particle under the effect 
of Earth’s oblateness, namely the second zonal harmonic J2 in the gravitational potential field. 
Any Earth satellite mission requires the precise computation of the orbital motion under the 
influence of this dominating perturbation. The non-integrability dynamics of the J2 problem [1] 
allow the avenue for analytical theories to be developed. In the past, several authors treated this 
problem to obtain closed form solution either by using averaging methods or by approximations. 
Using a canonical formulation, Sterne [2] investigated the problem of motion under the effect of 
an oblate spheroid and the canonical approach in terms of Delaunay variables was used by 
Brouwer [3]. A number of analytical theories for the motion of Earth's satellite under the effect 
of Earth's first few zonal harmonic terms are available in the literature [4-12]. The KS 
transformation regularizes the non-linear equations of motion and converts into linear 
differential equations of a harmonic oscillator. KS formulation was used by Engels and Junkins 
[13] and Jezewski [14] for short-term orbit predictions with J2 effect.

The KS uniform regular canonical equations of motion [15] are a particular canonical form
where all the ten elements are constant for unperturbed two-body problem and are applicable to 
elliptic, parabolic and hyperbolic orbital motion. Sharma and James Raj [16] numerically 
integrated these equations to obtain accurate orbit prediction under the effect of Earth’s 
oblateness with zonal harmonic terms up to J36. Analytical theory in terms of KS elements with 
J2 [17], [18] and with J3 and J4 [19] was developed by Sharma for short-term orbit predictions. 
James Raj and Sharma [20] analytically integrated the uniformly regular KS canonical elements 
with Earth’s zonal harmonics J2, J3 and J4. The independent variable, fictitious time ‘s’ given by

/dt ds r=  with t and r being the physical time and radial distance, respectively, and used for 
analytical integration, resulted in complicated integrals. Because of the complexity of the 
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integrals in evaluation for practical problems, the utility of the analytical solution was limited 
for operational purposes.  

In the present paper, we have developed a new non-singular analytical solution with J2 in 
close form in eccentricity ‘e’ by analytically integrating the uniformly regular KS canonical 
equations of motion, using the generalized eccentric anomaly ‘E’ as the independent variable. 
The integrals are found to be much simpler than obtained in [20]. The solution can have 
number of applications. It can be used for studying the short-term relative motion of two or 
more space objects and in collision avoidance studies of space objects. It can be also useful for 
onboard computation in the navigation and guidance packages, where the modeling of J2 effect 
becomes necessary. 

2   Equations of Motion 

The KS uniformly regular canonical equations of motion for the state vector in terms of the 
independent variable‘s’ are [15, 20] 
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The relation between ‘ s ’ and generalized eccentric anomaly ‘E ’ is given by 
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When the perturbation due to Earth’s oblateness J2 is considered, then Eq (4) becomes 
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where 2
2, , , , ,h K R E r J  are total energy, gravitational constant, Earth’s equatorial radius, 

generalized eccentric anomaly, radial distance and second zonal harmonic term of Earth, 
respectively. 

2.1   Initial Conditions 

As in [15], for 1 0x < : 

( )
( ) ( )
( ) ( )

2 2
1 4 1

2 2 1 3 4 1

3 3 1 2 4 1

/ 2

/ ,

/ .

u u r x

u x u x u r x

u x u x u r x

+ = +

= + +

= − +

，

, 

for 1 0x ≥ : 

 
( )

( ) ( )
( ) ( )

2 2
2 3 1

1 2 2 3 3 1

4 3 2 2 3 1

/ 2,

/ ,

/ .

u u r x

u x u x u r x

u x u x u r x

+ = −

= + −

= − −

 

Furthermore, 

 

( )
( )
( )
( )

1 1 1 2 2 3 3

2 2 1 1 2 4 3

3 3 1 4 2 1 3

4 4 1 3 2 2 3

/ 2,

/ 2,

/ 2,

/ 2.

w u x u x u x

w u x u x u x

w u x u x u x

w u x u x u x

= + +

= − + +

= − − +

= − +

� � �

� � �

� � �

� � �

 

3   Analytical Integration 

The right hand side of the equations (3) can be written as 
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where 3x  and 2
3x  are given as [16]: 
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On substituting ( )1 cosr a e E= −  into equations (8) and integrating analytically, we get 
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4   Numerical Results 

To compute the uniformly regular KS canonical elements with Earth’s zonal harmonic term J2 
during a revolution, we have programmed equations (6) and (7) in double precision arithmetic. 
The numerical integration (NUM) is carried out using fourth-order Runge-Kutta-Gill method. 
The analytical solutions are obtained from equations (8). The canonical elements are converted 
to the state vectors and then to the orbital elements. Three test cases A, B, C with constant 
perigee altitude of 250 km and apogee altitudes of 250 (e=00379), 1000 (e=0.0573) and 10000 
(e=0.4269) km at three different inclinations (5o, 30o and 85o) are chosen for detailed numerical 
studies. The initial conditions are given in Table 1. The bilinear relation 
 4 1 3 2 2 3 1 4 0,α β α β α β α β− + − =  
in terms of the canonical elements is utilized for finding the accuracy of numerical and 
analytical solutions. Figures 1, 2 and 3 are plotted for the three cases A, B, C with respect to 
numerical and analytical computations for the three inclinations 5, 30 and 85 degrees, 
respectively. Figures 1a, 1c and 1e provide the variation in osculating semi-major axis, 
eccentricity and inclination during a revolution for the three cases for 5 degree inclination.  
Similarly Figures 2a, 3a; 2c, 3c and 2e, 3e provide the variation in osculating semi-major axis, 
eccentricity and inclination during a revolution for the cases 2 and 3 for i=30 and 85 degrees, 
respectively. The maximum variations during a revolution in osculating semi-major axis are for 
case C (e=0.4269) and are around 18.6, 4.8 and 48 km for i=5, 30 and 85 degrees, respectively. 
The difference between the numerical and the analytical values computed in a single step 
(ANAL1) with respect to the independent variable  E are provided in Figures 1b, 1d, 1f; 2b, 2d, 
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2f; 3b, 3d, 3f;  in osculating semi-major axis, eccentricity and inclination during a revolution for 
the three cases for  i=5, 30 and 85 degrees, respectively.  

Table 1.  Initial orbital parameters. 

Parameters 
Values 

Case A Case B Case C 
Perigee altitude               (km) 200 200 200 
Apogee altitude               (km) 250 1000 10000 
Semi-major axis              (km) 6603.14 6978.1 11478 
Eccentricity 0.00379 0.0573 0.4269 
Inclination                   (degree) 5, 30, 85 5, 30, 85 5, 30, 85 
Argument of perigee      (degree) 270 270 270 
Mean Anomaly            (degree) 0 0 0 

 
Figure 1. Analytical and numerical comparison at 5o inclination. 

It is noticed from Fig. 1b (5 degrees inclination) that the difference between NUM and 
ANAL1 in osculating semi-major axis, increases with  the increase in the analytical step size E 
for high eccentricity (0.4269) case C and is -107 metres at E=360 degrees. However, the 
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difference is less than 3 metres for the cases A and B, whose initial eccentricities are small: 
0.00379, 0.0573, respectively. The maximum difference between NUM and ANAL1 in semi-
major axis is 54 metres at E=335 degrees and 181 metres at E=330 degrees for case C, for i=30 
and 85 degrees. It is noted from Figs. 1-3 that the difference between NUM and ANAL1 up to 
half a revolution for three cases with the three inclinations is quite less.  

Table 2.  Variation in semi-major axis during half a revolution with J2 for case B. 

Parameter Method 
ANAL steps (deg) 

10 20 30 60 90 135 180 

a (m) 
Case B  
at 5o 

ANAL1 -14.0251 -56.0713 -125.9331 -490.8953 -1018.6194 -1776.0763 -2078.024 
NUM-ANAL1  
(single step) 

-0.00073 -0.0115 -0.0575 -0.8397 -3.5202 -11.3816 -21.1429 

ANAL 2 -14.0254 -56.077 -125.9605 -491.2813 -1020.4034 -1784.0055 -2095.535 
NUM-ANAL2  
(1 deg) 

-0.0003 -0.0057 -0.0301 -0.4671 -1.7363 -3.4524 -3.6321 

ANAL 3 -14.0254 -56.0776 -125.9625 -491.2813 -1020.4215 -1783.9930 -2095.511 
NUM-ANAL3  
(5 deg) 

-0.0003 -0.0052 -0.0281 -0.4536 -1.7182 -3.4649 -3.6562 

a (m) 
Case B  
at 30o 

ANAL 1 185.4156 708.9041 1479.3575 3936.9155 4416.05673 1445.9347 -543.1845 
NUM-ANAL1  
(single step) 

-0.00233 -0.0376 -0.1931 -3.0411 -12.6871 -31.3681 -26.1483 

ANAL 2 185.4156 708.9041 1479.3575 3936.9155 4416.0567 1445.9347 -543.1845 
NUM-ANAL2  
(1 deg) 

0.00472 0.0821 0.4334 5.0712 7.7481 -0.1733 -1.3117 

ANAL 3 185.4178 708.9205 1479.4174 3937.2730 4416.4841 1446.6301 -542.4118 
NUM-ANAL3  
(5 deg) 

0.0025 0.0657 0.3735 4.7137 7.3206 -0.8687 -2.0844 

a (m) 
Case B 
at 85o 

ANAL 1 800.2371 3067.5175 6430.3174 17610.8634 21218.1106 11505.8182 4361.2771 
NUM-ANAL1  
(single step) 

-0.0587 -0.8812 -4.00873 -35.46 -59.3743 39.8935 107.7332 

ANAL2 800.3274 3068.7386 6434.5023 17606.7487 21187.8139 11566.601 4478.9959 
NUM-ANAL2  
(1 deg) 

-0.149 -2.1022 -8.1936 -31.3454 -29.0776 -20.8891 -9.9856 

ANAL3 800.2835 3068.4893 6434.0773 17608.2199 21190.1304 11570.7026 4483.0149 
NUM-ANAL3  
(5 deg) 

-0.1051 -1.8529 -7.7685 -32.8166 -31.3941 -24.9908 -14.0045 
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Figure 2. Analytical and numerical comparison at 30o inclination. 

We conclude that the present analytical solution is suitable for computation of the state 
vectors in a single step up to half a revolution. In Table 2, we provide the difference between 
numerical and analytical values of semi-major axis for case B (e=0.0573) at 5, 30 and 85 degrees 
inclinations for half a revolution. ANAL1 is the difference between analytical integration in a 
single step and initial value of semi-major axis. ANAL2 is the analytical integration with one 
degree step size in E utilizing 180 integration steps minus the initial semi-major axis. ANAL3 is 
the analytical integration with a step size of 5 degree utilizing 36 integration steps minus the 
initial semi-major axis. The deviations during half a revolution with ANAL1, ANAL2 and 
ANAL3 and difference between NUM and ANAL1, ANAL2 and ANAL3 are provided at E=10, 
20, 30, 60, 90, 135 and 180 degrees, respectively. 

It may be noted that ANAL2 and ANAL3 improve the accuracy considerably during the half 
a revolution. It is interesting to note that the differences between NUM and ANAL1 with 30 
degrees analytical step size, for the 3 inclinations of 5, 30 and 85 degrees are 0.057, 0.193 and 
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4.009 metres, respectively, over a variation of 125.9, 1479.4 and 6430.3 metres, respectively. The 
percentage error is only 0.045, 0.013 and 0.062, respectively, for the 3 eccentricities. It is also 
interesting to note that for orbit computation up to 60 degrees in E, single analytical step is 
sufficient. For higher values of E, a small analytical step size of 1 to 5 degrees provides more 
accurate orbits in the osculating state.  

 
Figure 3. Analytical and numerical comparison at 85o inclination. 

5   Conclusion 

KS uniformly regular canonical equations of motion provide a very efficient and accurate 
analytical integration method for short-term orbit computation with Earth’s oblateness J2 for 
short-term motion during a revolution. Only one of the eight equations needs to be integrated 
analytically to generate the state vector as a result of symmetry in the KS uniformly regular 
canonical equations of motion. The integrals are much simpler to evaluate than obtained earlier. 
Numerical results indicate that the solution is reasonably accurate for a wide range of orbital 
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parameters during half a revolution. The solution has number of applications. It can be used for 
studying the short-term relative motion of two or more space objects, collision avoidance studies 
of space objects and for onboard computation in the navigation and guidance packages, where 
the modeling of J2 effect becomes necessary. 
 
Acknowledgement. The authors gratefully acknowledge the support received by grant: 
“SR/S4/MS: 801/12” from Department of Science and Technology-Science and Engineering 
Research Board (DST-SERB), India to carry out this work. 

References 

1. A. Celleti, P. Negrini, “Non-integrability of the problem of motion around an oblate planet,” Celestial 
Mechanics, vol. 61, pp. 253-260, 1995. 

2. T.E. Sterne, “The gravitational orbit of a satellite of an oblate planet,” Astronomical Journal, vol. 63, 
pp 28-40, 1958. 

3. D. Brouwer, “Solution of the Problem of Artificial Satellite Theory without Drag,” Astronomical 
Journal, vol. 64, pp. 378-396, 1959. 

4. D. King-Hele, “The effect of the Earth Oblateness on the Orbit of a Near Satellite,” Proc. R. Soc. 
London A vol. 247, pp. 49-72, 1958. 

5. Y. Kozai, “The Motion of a Close Earth Satellite,” Astronomical Journal Astron. J, vol. 64, pp. 367-377, 
1959. 

6. B. Garfinkel, “The orbits of a satellite of an oblate planet,” Astronomical Journal, vol. 64, pp 353-, 1959. 
7. A. Deprit, A. Rom, “The main problem of satellite theory for small eccentricities,” Celestial Mechanics, 

vol. 4, pp. 119-121, 1970. 
8. K. Aksnes, “A Second-Order Artificial Satellite Theory Based on an Intermediate Orbit,” Astronomical 

Journal, vol. 75, pp 1066-1076, 1970. 
9. H. Kinoshita, “Theory of rotation of the rigid Earth,” Celestial Mechanics, vol. 15, pp. 277-326, 1977. 
10. A. Deprit, “The elimination of parallax in satellite theory,” Celestial Mechanics, vol. 24, pp.111-153, 

1981. 
11. R.H. Gooding, “On the Generation of Satellite Position (and Velocity) by a Mixed Analytical-

Numerical Procedure,” Advances in Space Research, vol. 1, pp. 83-93, 1981. 
12. R.H. Gooding, “Perturbations, untruncated in eccentricity, for an orbit in an axi-symmetric 

gravitational field”, Journal of Astronautical Science, vol. 39, pp. pp. 65-85, 1991. 
13. R. C. Engels, J. L. Junkins, “The Gravity-Perturbed Lambert Problem: A KS Variation of Parameters 

Approach,” Celestial Mechanics, vol. 24, pp. 3-21, 1981. 
14. D. J. Jezewski, “A noncanonical analytic solution to the J2 perturbed two-body problem,” Celestial 

Mechanics, vol. 30, pp. 343-361, 1983. 
15. E. L. Stiefel, G. Scheifele, “Linear and Regular Celestial Mechanics,” Springer, Berlin, 1971. 
16. R. K. Sharma and M. X. James Raj, “Long-term orbit computations with KS uniformly regular 

canonical elements with oblateness,” Earth Moon and Planets, vol. 42, pp. 163-178, 1988. 
17. R. K. Sharma, “Analytical approach using KS elements to short-term orbit predictions including J2,” 

Celestial Mechanics, Celestial Mechanics and Dynamical Astronomy, vol. 46, pp. 321-333, 1989. 
18. R. K. Sharma, “Analytical integration of KS element equations with J2 for short-term orbit 

predictions,” Planetary and Space Science, vol. 45, pp. 1481-1486, 1997. 
19. R. K. Sharma, “Analytical short-term orbit predictions with J3 and J4 in terms of KS elements,” 

Celestial Mechanics and Dynamical Astronomy, vol. 56, pp. 503-521, 1993.  
20. M. X. James Raj and R. K. Sharma, “Analytical short-term orbit prediction with J2, J3, J4 in terms of 

KS uniformly regular canonical elements,” Advances in Space Research, vol. 31, pp. 2019-2025, 2003. 
 

150 Advances in Astrophysics, Vol. 2, No. 2, May 2017

AdAp Copyright © 2017 Isaac Scientific Publishing




