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Abstract A theoretical investigation has been carried out for understanding the nonlinear propa-
gation characteristics of the dust-ion-acoustic (DIA) solitary and shock waves in an unmagnetized
dusty plasma containing Maxwellian negative ions, superthermally distributed electrons, positively
charged stationary dust particles and cold mobile inertial positive ions. The reductive perturbation
method has been employed to derive the Korteweg-de Vries (K-dV), modified Korteweg-de Vries
(mK-dV) as well as Burger equations along with its solutions in order to study the basic features of
such waves both numerically and analytically. It has been found that the presence of superthermal
electrons significantly modifies the basic properties of such DIA solitary and shock wave structures.
The present investigation can be very effective for understanding and studying various astrophysical
environments (viz. Saturn magnetosphere, pulsar magnetosphere, etc).

Keywords: Dust-ion-acoustic waves, solitary waves, shock waves, superthermal electron, K-dV,
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1 Introduction

Nowadays the studies on the nonlinear propagation of DIA waves (e.g. DIA solitary and DIA shock
waves) in dusty plasmas have received a considerable attention because of their significant importance to
understand the behavior of space plasmas viz. supernovas, pulsar environments, cluster explosions and
active galactic nuclei[1,2,3,4]. The presence of highly positively charged, massive grains of dust particles
in an electron ion plasma is responsible for the appearance of new types of waves, depending on whether
the dust grains are considered to be static or mobile. One type of these waves is the the DIA wave, which
is nothing but the usual ion-acoustic wave modified by the presence of dust grains. In these waves, the ion
mass provides the inertia of the waves and restoring force comes from the thermal pressure of electrons.
The phase speed of such DIA waves is much larger than the ion thermal speed and much smaller than the
electron thermal speed. Other types of waves are Dust-acoustic (DA) waves in which dust mass provides
the inertia of the waves and restoring force comes from the thermal pressure of electrons as well as ions.

About 24 years ago, Shukla and Silin [5] have theoretically showed that because of the equilibrium
charge neutrality condition ni0 = ne0 + Zdnd0, and the strong inequality ne0 � ni0 (where ne0, nd0, and
ni0 are electron, dust, and ion number densities at equilibrium respectively, and Zd is the number of
electrons residing onto the dust grain surface) a dusty plasma supports the low frequency DIA wave. The
existence of such DIA waves has been found experimentally by Barkan et al. and Nakamura et al.[6,7].
The linear [5,6,8,9] and nonlinear[6,7,10,11,12,13] properties of DIA waves in dusty plasmas are now well
understood from theoretical and experimental point of view. Mamun et al. [14,15,16] have considered
a dusty electronegative plasma containing Maxwellian electrons, Maxwellian negative ions, cold mobile
positive ions, and negatively charged stationary dust, and have examined the possibility for the formation
of IA and DIA solitary waves and double layers in a DENP. Rahman and Mamun have investigated the
DIA solitary waves in dusty plasma with arbitrarily charged dust and vortex-like electron[17]. They have
derived mK-dV equations and found only positive potential due to trapped electrons. Kundu and Mamun
have considered three components unmagnetized dusty plasma and studied the nonlinear propagation of
DIA solitary waves with arbitrarily charged stationary dust and non-thermaly distributed electrons[18].
They have shown that the DIA waves can support solitary structures associated with both positive and
negative potential due to the presence of non-thermal electrons in their dusty plasma model.
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However, a lot of theoretical observations of space plasmas [19,20,21,22,23,24,25,26] are often charac-
terized by a particle distribution function with high energy tail and they may deviate from the Maxwellian
distribution. Superthermal particles may arise due to the effect of external forces acting on the natural
space environment plasmas or to wave particle interaction. Plasmas with an excess of superthermal
non-Maxwellian electrons are generally characterized by a long tail in the high energy region. Such space
plasmas can be modeled by generalized Lorentzian or kappa distribution[19,27,28,29] rather than the
Maxwellian distribution.

The isotropic three dimensional generalized Lorentzian or kappa velocity distribution function takes
the form [27].

Fk(v) = Γ (k + 1)
(πkθ2)3/2Γ (k − 1/2)

(
1 + v2

kθ2

)−(k+1)

where θ is the most probable (effective thermal) speed related to the usual thermal velocity Vt =
(kBT/m)1/2 by θ = [(2k− 3)/k]Vt, T being the characteristic kinetic temperature, i.e., the temperature of
the equivalent Maxw-ellian with the same average kinetic energy [30], and kB is the Boltzmann constant.
The parameter k represents the strength of superthermality of the plasma species and it’s values lies within
the range ∞ > k > 3/2. Low values of k represent a ŞhardŤ spectrum with a strong non-Maxwellian
(power law-like) tail, an enhanced velocity distribution at low speeds, and a depressed distribution at
intermediate speeds [27]. In the limit k →∞, the above kappa distribution function for electrons reduces
to the well known Maxwell-Boltzmann distribution. The solitary waves, which are formed due to the
balance between nonlinearity and dispersion, are being investigated by using a suitable set of stretched
coordinates[31], which neglect the effect of dissipation. On the other hand the shock waves, which are
formed due to the balance between nonlinearity and dissipation, are investigated by using a suitable set
of stretched coordinates[32], which neglect the effect of dispersion. Baluku et al [33] have studied the
DIA solitons in an unmagnetized dusty plasma which consist cold dust particles, adiabatic fluid ions and
electrons satisfying k distribution. On the other hand, the DIA shock waves in a two electron temperature
dusty plasma have been investigated by Masud et al [4]. They [4] have considered an unmagnetized dusty
plasma containing inertial ions, Maxwellian electrons with two distinctive temperatures and negatively
charged immobile dust particles and have found the existance both positive and negative shock waves by
deriving Burger equation. Alam et al [34] have studied the effect of bi-kappa distributed electrons on
the nonlinear propagation DIA shock waves in a dusty supperthermal plasmas. They have investigated
the effects of ion kinematic viscosity and the superthermal two temperature electrons. The roles of
superthermal electrons and adiabatic heavy ions on heavy-ion-acoustic solitary and shock waves in
a multi-component plasma have been studied by Shah et al [35] in 2015. However, all of the works
[4,33,34,35] on DIA solitary and shock waves are based on the three components (i.e., electrons, ions and
dust or electrons with two distinct temperatures, ion and dust) dusty plasma but they did not consider
the existence of both positive and negative ions in the same plasma system. In this paper, we investigate
both the properties of solitary and shock waves separately under different conditions using the same
plasma model. To the best of our knowledge, there is no investigation which has been made on DIA
solitary and shock structures in multi-component dusty plasma system consisting of inertial positive
ions, superthermal electrons, Maxwellians negative ions, and positively charged stationary dust particles.
Therefore, in our present work, we consider a more general multi-component dusty plasma system that is
an admixture of electrons, positive ions, negative ions and positively charged static dust, and examine
the possibility for the formation of DIA solitary and shock structures, and analyze their basic features in
such a multi-component dusty plasma system.

The manuscript is organized as follows. The basic equations governing the nonlinear propagation of
DIA waves in an unmagnetized dusty plasma system are given in Sec. 2. The K-dV, mK-dV equations
are derived and numerically solved in Sec. 3. The Burgers equation is also derived and numerically solved
in Sec. 4. A brief discussion is finally presented in Sec. 5.

2 Governing Equations

A collisionless unmagnetized four components dusty electronegative plasma (DENP) containing Maxwellian
negative ions, kappa distributed electrons, cold mobile positive ions and positively charged stationary
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dust is considered. Therefore, at equilibrium, np0 + Zdnd0 = ne0 + nn0, where np0, ne0, nn0, and nd0 are,
respectively, positive ion, electron, negative ion, and dust number density at equilibrium. Zd is the charge
state of stationary dust grain. The nonlinear dynamics of the low frequency electrostatic perturbation
mode in such a DENP is described by

∂np
∂t

+ ∂

∂x
(npup) = 0 (1)

∂up
∂t

+ up
∂up
∂x

= −∂φ
∂x

+ η
∂2u

(1)
p

∂ξ2 (2)

∂2φ

∂x2 = µe

(
1− φ

k − 3/2

)(1/2−k)
+ µne

αφ − np − µd (3)

where np (nn) is the positive (negative) ion number density normalized by its equilibrium value np0 (nno),
up is the positive ion fluid speed normalized by the positive ion-acoustic speed Cp = (kBTe/mp)1/2, φ is
the electrostatic wave potential normalized by kBTe/e, µn = 1− µe + µd, µd = Zdnd0/np0, µe = ne0/np0,
α = Te/Tn, Te (Tn) is the electron (negative ion) temperature, mp is the mass of positive ion, η is
the positive ion kinematic viscosity normalized by mpnp0ωppλ

2
D and e is the magnitude of the electron

charge. The time variable t is normalized by the positive ion plasma period ω−1
pp and the space variable is

normalized by λD.

3 Solitary Waves

3.1 Derivation of K-dV Equation

To investigate the behavior of the small, but finite amplitude electrostatic DIA waves in the DENP under
consideration, we first derive the well known Korteweg-de Vries (K-dV) equation using the reductive
perturbation method[31]. In this case, we will first omit the dissipation effect by neglecting the 2nd term
on the right side of Eq. 2. Therefore, no significant dissipation effect arises in solitary structures. The
K-dV equation has been introduced by the following stretched coordinates[31,36,37,38]

ξ = ε1/2(x− vpt)
τ = ε3/2t

}
(4)

where ε is a small dimensionless expansion parameter measuring the strength of nonlinearity (0 < ε < 1)
and vp is the phase speed of this wave. We can expand the physical quantities (np,up, φ) appearing in
the basic equations (1-3) in power series of ε [31,39,40,41]. Let M be any of the system variables np, up
and φ, describing the system’s state at given position and instant. We consider small deviations from the
equilibrium state M (0)-which explicitly is n(0)

p = 1, u(0)
p = 0 and φ(0) = 0 by taking

M = M (0) +
∞∑
n=1

εnM (n) (5)

Now, using Eqs. (4)-(5) into Eqs. (1)-(3) one can obtain the first order continuity equation, momentum
equation and Poisson’s equation which, after simplification, yield

u(1)
p = ψ

vp
, n(1)

p = ψ

v2
p

(6)

vp =
√

κ2

κ2αµn + κ1µe
(7)

where ψ = φ(1), κ1 = κ− 1/2 and κ2 = κ− 3/2. Equation (7) represents the linear dispersion relation
for DIA waves. In order to obtain the next higher order of ε, we put the values of Eqs. (4)-(7) into Eqs.
(1)-(3) and we get the flowing set of equations
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Figure 1. The variation of phase speed (vp) of SW with α and µe for k = 20 and µd = 0.5 (µd = 0.9) upper
surface (lower surface).
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Figure 2. The A = 0 graph which represents the variation of µc with α and k for µn = 0.01. Where µc is the
minimum (critical) value of µe above (below) which compressive (rarefactive) DIA solitary structures are found.
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Figure 3. The variation of amplitude (ψm()of the positive and negative K-dV solitons with µe for u0 = 0.1,
µn = 0.1, α = 10 and k = 2. The blue curve for µe = 0.5, the red curve for µe = 0.6, the green curve for µe = 0.4
and the black curve for µe = 0.3.
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Figure 4. The variation of amplitude (ψm) of solitary wave with α for u0 = 0.1, µn = 0.1 and µe = 0.8. The solid
curve (red) for k = 5 and the dash curve (blue) for k = 10.
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Figure 5. The variation of amplitude (ψm) of solitary wave with k and µn for u0 = 0.1, µe = 0.4 and α = 10.
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Figure 6. The variation of width (δ1) of solitary wave structures with α and k for u0 = 0.1, µn = 0.1 and µe = 0.5.

130 Advances in Astrophysics, Vol. 2, No. 2, May 2017

AdAp Copyright © 2017 Isaac Scientific Publishing



0.1

0.2

0.3

0.4

0.5

Μn
0.4

0.6

0.8

Μe

2

3
∆1

Figure 7. The variation of width (δ1) of solitary wave structures with µn and µe for u0 = 0.1, k = 20 and α = 10.

∂n
(1)
p

∂τ
− vp

∂n
(2)
p

∂ξ
+ ∂u

(2)
p

∂ξ
+ ∂

∂ξ

(
n(1)
p u(1)

p

)
= 0 (8)

∂u
(1)
p

∂τ
− vp

∂u
(2)
p

∂ξ
+ u(1)

p

∂u
(1)
p

∂ξ
+ ∂φ(2)

∂ξ
= 0 (9)

∂2ψ

∂ξ2 = φ(2)

v2
p

+
(
κ3κ4µe

2κ2
2

+ α2µn
2

)
ψ2 − n(2)

p (10)

where κ3 = 1/2− k, κ4 = −1/2− k, κ5 = κ+ 3/2, κ2 = k− 3/2. Now, solving Eqs. (8-10) with the help of
Eqs. (6)-(7), we obtain a equation of the form:

∂ψ

∂τ
+Aψ

∂ψ

∂ξ
+B

∂3ψ

∂ξ3 = 0. (11)

where,

A =
v3
p

2

[
3
v4
p

− κ3κ4µe
κ2

2
− µnα2

]
, (12)

B =
v3
p

2 . (13)

Equation (11) is a K-dV equation, exhibiting a stronger nonlinearity, smaller width, and larger propagation
velocity of the nonlinear wave.

3.2 Solution of K-dV Equation

The stationary solitary wave solution of this K-dV equation can be obtained by considering a moving
frame (moving with speed u0) ζ = ξ − u0τ , where ζ is normalized by λD and u0 is normalized by Cp,
and imposing the appropriate boundary conditions for localized disturbances, viz. ψ → 0, dψ/dζ → 0,
d2ψ/dζ2 → 0 at ζ → ±∞. Thus, one can express the stationary solitary wave solution of the K-dV
equation (11) as

ψ = ψmsech
2[(ξ − u0τ)/δ1], (14)

where φm = 3u0/A is the amplitude, and δ1 =
√

4B/u0 is the width of the solitary waves. The nonlinear
coefficient, A, can be either positive or negative depending on the value of Vp, k, µe, µn and σ. It is clear
from Eqs. (12) and (14) that the plasma system supports the DIA solitary waves with either positive
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(A > 0) if µe > 0.456 or negative potential (A < 0) if µe < 0.456 and no solitary waves exist at A = 0. To
have some numerical estimations of our results, we have numerically analyzed solitary height, width, and
profile by using the general expressions for the coefficients A and B [i.e., by using Eqs. (12)-(14)]. The
phase speed of DIA SWs varies with µe and α which is shown in figure 1. Figure 2 shows how µc varies
with α and k. This represents the A = 0 surface plots, and provides us the parametric regimes above
(below) which SWs associated with hump (dip) shape. The existence of both positive and negative K-dV
solitons is shown in figure 3 for different values of µe. The critical value of µe is 0.456. Above this values
of µe the K-dV solitons associated with only positive potential and for µe ≤ 0.456 the K-dV solitons
associated with only negative potential. The variation of positive and negative K-dV solitons with α is
shown in figure 4. From this figure it has been clear that for lower values of α (α < 5) the K-dV solitons
associated with positive potential and for higher values of α (α > 5) the K-dV solitons associated with
negative potential. The critical value of α is changes with k. It increases with increasing the values of
k. Figure 5 shows the variation of the potential of K-dV solitons with k and µn. The variations of the
width (δ1) of the K-dV solitons is shown in figure 6 and 7 with some dusty plasma parameters. The width
of this K-dV solitons becomes lower with increasing the values of α, µn and µe. On the other hand, it
becomes larger for large values of spectral index (k).

3.3 Derivation of mK-dV Equation

A modified K-dV (mK-dV) equation is obtained by taking the next higher order calculation of ε. To
analyze the nonlinear evolution near the critical parameter µe ' µc, mK-dV equation is obtained from the
third order calculation of ε, which utilizes another set of stretched coordinates. The stretched co-ordinates
[42,43] for mK-dV equation is:

ξ = ε(x− vpt)
τ = ε3t

}
(15)

Now, using Eq. (5) and (15) into Eqs. (1)-(3), we have found the same values of n(1)
p , u(1)

p and vp as like
as that of the K-dV equation. To the next higher order of ε, we obtained a set of equations, which after
using the values of n(1)

p , u(1)
p and vp can be simplified as

u(2)
p = 1

2v3
p

ψ2 + φ(2)

vp
(16)

n(2)
p = 3

2v4
p

ψ2 + φ(2)

v2
p

(17)

ρ(2) = −1
2A
[
ψ(1)

]2
= 0 (18)

To the next higher order of ε, we obtain a set of equations:

∂n
(1)
p

∂τ
− vp

∂n
(3)
p

∂ξ
+ ∂u

(3)
p

∂ξ
+ ∂

∂ξ

(
n(2)
p u(1)

p

)
+ ∂

∂ξ

(
n(1)
p u(2)

p

)
= 0 (19)

∂u
(1)
p

∂τ
− vp

∂u
(3)
p

∂ξ
+ u(1)

p

∂u
(2)
p

∂ξ
+ u(2)

p

∂u
(1)
p

∂ξ
+ ∂φ(3)

∂ξ
= 0 (20)

∂2ψ

∂ξ2 =
[
αµn + κ1µe

κ2

]
φ(3) +

[
κ3κ4κ5µe

6κ3
2

+ α3µn
6

]
ψ3 +

[
κ3κ4µe
κ2

2
+ α2µn

]
ψφ(2) − n(3)

p (21)

Now, combining Eqs. (19-21), we obtain a equation of the from:

∂ψ

∂τ
+ βBψ2 ∂ψ

∂ξ
+B

∂3ψ

∂ξ3 = 0 (22)

where,

β = 15
2v6
p

− κ3κ4κ5µe
2κ2

2
− µnα

3

2 (23)
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Figure 8. The variation of amplitude of the positive mK-dV solitons with µe for u0 = 0.1, µn = 0.3, α = 10 and
k = 10. The upper curve (blue) is for µe = 0.4, the middle curve (green) for µe = 0.6 and the lower curve (red) for
µe = 0.9.
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Figure 9. The variation of amplitude of the positive mK-dV solitons with α and k for u0 = 0.1, µn = 0.3 and
µe = 0.5.
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Figure 10. The variation of amplitude of the positive mK-dV solitons with µe and µn for u0 = 0.1, α = 5 and
k = 10.

Advances in Astrophysics, Vol. 2, No. 2, May 2017 133

Copyright © 2017 Isaac Scientific Publishing AdAp



2

3

4

5

k
2

4

6

8

10

Α

0.4

0.6

0.8

1.0

1.2

∆2

Figure 11. The variation of width of the positive mK-dV solitons with k and α for u0 = 0.1, µn = 0.3 and
µe = 0.4.
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Figure 12. The variation of width of the positive mK-dV solitons with µe and µn for u0 = 0.1, α = 5 and k = 10.
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Figure 13. The variation of amplitude of both positive K-dV solitons (upper curve) and positive mK-dV solitons
(lower curve) for u0 = 0.1, µn = 0.3, µe = 0.8, α = 10 and k = 20.
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B =
v3
p

2 (24)

Equation (22) is a mK-dV equation, exhibiting a stronger nonlinearity, smaller width, and larger
propagation velocity of the nonlinear wave.

3.4 Solution of mK-dV Equation

The solution of Eq. (22) can be obtained by following the same procedure as K-dV equation. Therefore,
the stationary solitary wave solution of mK-dV equation can be witten as:

ψ = ψmsech (ζ/δ2) (25)

where the amplitude ψm and the width δ2 are given by ψm =
√

6u0/βB and δ2 =
√
u0/B. The amplitude

and width variation of mK-dV solitons are nearly valid around critical value. The mK-dV equation has
a solitary wave solution around µe = µc. The formation of positive mK-dV solitons is shown in figure
8. This figure indicates that the amplitude of this wave increases with increasing the electron number
density. Figures 9 and 10 show how the amplitude of this wave varies with some dusty plasma parameters.
On the other hand, figures 11 and 12 show how the width of this wave varies with those dusty plasma
parameters. The amplitude of this wave equation decreases with increasing the values of both α, µe, µn
and amplitude increases with k. Reverse effects are found in the case of width of this wave which are
shown in figures 11 and 12. Comparison of the solitary waves potential (amplitude) of K-dV and mK-dV
solitons is shown in figure 13. From this figure it has been found that the potential of K-dV solitons is
larger than the potential of mK-dV solitons with same values of dusty plasma parameters.

4 Shock Waves

4.1 Derivation of Burgers Equation

Now we derive the Burgers equation (BE). The DIA BE has been introduced by the following stretched
coordinates [34,44]

ξ = ε(x− vpt)
τ = ε2t

}
(26)

where vp is the phase speed of DIA shock waves. By using Eqs. (5) and (26) in Eqs. (1)-(3), the same
values of u(1)

p , n(1)
p , and vp are found as like as that of the K-dV equation. To the next higher order of ε,

we obtain a set of equations which, after using Eqs. (6) and (7), can be simplified as

∂n
(1)
p

∂τ
− vp

∂n
(2)
p

∂ξ
+ ∂u

(2)
p

∂ξ
+ ∂

∂ξ

(
n(1)
p u(1)

p

)
= 0 (27)

∂u
(1)
p

∂τ
− vp

∂u
(2)
p

∂ξ
+ u(1)

p

∂u
(1)
p

∂ξ
+ ∂φ(2)

∂ξ
− η ∂

2u
(1)
p

∂ξ2 = 0 (28)

∂n
(2)
p

∂ξ
−
(
µeκ3κ4

κ2
2

+ α2µn

)
ψ
∂ψ

∂ξ
− 1
v2
p

∂φ(2)

∂ξ
= 0 (29)

Now, combining Eqs. (27)-(29), we obtain a equation of the form:

∂ψ

∂τ
+Aψ

∂ψ

∂ξ
= C

∂2ψ

∂ξ2 (30)

where the value of A is same as we obtained for K-dV solitons and C is given by

C = η

2 (31)

Equation (30) is a Burger equation (BE).
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4.2 Solution of Burgers Equation

The stationary solution of this BE is obtained by transforming the independent variables ζ and τ to
ζ = ξ − u0 and τ = τ , where u0 is a constant velocity normalized by Cp, and imposing the appropriate
boundary conditions, viz., ψ → 0, ∂ψ/∂ζ → 0, at ζ → +∞. Thus, one can express the stationary solution
of the BE as

ψ = ψm[1− tanh(ζ/δ)], (32)

where δ = 2C/u0 is the width and ψm = u0/A is the amplitude of the shock wave. It is clear from Eq. (12),
for A > 0 the dusty plasma supports compressive DIA shock waves which are associated with positive
potential and for A < 0 the dusty plasma supports rarefactive DIA shock waves which are associated with
negative potential. On the other hand no shock waves exist for A = 0. It is also noted that the nonlinear
coefficient A is a function of α, k, µn and µe. Hence, in order to find the parametric regimes corresponding
to A = 0, we have to express one (viz. µe) of these four parameters in terms of other parameters (viz. α,
k and µn). Therefore, A(µe = µc) = 0 and the critical condition (µc) can be written as

µce = 1
6Q1

[
Q2 +Q3

√
Q4 +Q5 +Q6

]
(33)

where, Q1 = 1− 4k(1− k), Q2 = −1 + 4k2(1− 6αµn)− 6αµn(3 + 8k), Q3 = 1− 2k, Q4 = 1 + 4k(1 +αµn),
Q5 = 4k2(1− 12αµn) and Q6 = 4αµn(9 + k + 27α− 36αk). µc is the critical value of µe above (below)
which the shock waves with a positive (negative) potential can exist. We can find A = 0 for a certain
(critical) value of µe, i.e. A = 0 for µe = µc ' 0.456 for a set of dusty plasma parameters viz. µn = 0.1,
α = 10 and k = 2 in our present dusty plasma system. It is clear that the potential of shock wave becomes
infinity at µe = µc and the BE that we have derived is no loner valid at this condition, so shock waves
are found only for µe 6= µc. Figure 14 shows the positive and negative potential shock structures for some
dusty plasma parameters. This figure indicates that the amplitude of positive (negative) potential shock
structures decreases (increases) with the increase of κ. Figure 15 shows the variation of potential (ψm) of
DIA shock waves with α and κ. It is found from this figure that the dusty plasma parameter α has a
critical value. Above this value of α the shock structures associated with negative potential and below
this value it associated with positive potential. Figure 16 represents the variation of width of the shock
structures with positive kinematic viscosity η for different values of positive ion fluid speed u0 . The
width of the shock structures increases (decreases) with the increase of η (u0).
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Figure 14. The variation of the positive and negative potential shock structures with k for u0 = 0.1, µn = 0.1,
µe = 0.5, η = 0.5 and α = 1.4. The blue curve for k = 2, the green curve for k = 2.1,the red curve for k = 1.7 and
the black curve for k = 1.8.
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Figure 15. The variation of amplitude of the shock wave structures with α and k for u0 = 0.1, µn = 0.1 and
µe = 0.5.
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Figure 16. The variation of width of the shock wave structures with η. The blue curve for u0 = 0.1, the red curve
for u0 = 0.2 and the green curve for u0 = 0.3.
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5 Discussion

We have considered an unmagnetized dusty plasma system consisting of inertial cold positive ions,
superthermal (Kappa distributed) electrons, Maxwellian distributed negative ions and positively charged
stationary dust particles, and studied DIA solitary and shock waves. We have investigated the basic features
(amplitude, width, phase speed, etc.) of these nonlinear waves (solitary and shock waves) associated with
the considered dusty plasma system by deriving K-dV, mK-dV equations and BE using the reductive
perturbation method. The dusty plasma system under consideration supports finite amplitude solitary
and shock waves, whose basic features strongly depend on the plasma parameters viz. α, k, µn and µe.
The important finding that we obtained from our investigation can be summarized as follows:

1. We have found that K-dV equation supports both compressive (positive) and rarefactive (negative)
solitary waves, while mK-dV equation supports only compressive solitary waves for above or below
the critical value (i.e. when µe > µc or µe < µc). The critical value of µe is ' 0.456.

2. The phase velocity of DIA waves decreases with increasing the number density of electron and
the temperature ratio of electron and negative ion. That means, the phase velocity of nonlinear
propagation becomes slower with increasing the number of electrons as well as the temperature in
this plasma model.

3. The critical value of µe increases with increasing the ratio of electron and negative ion temperature
and also with the spectral index which is shown in figure 2.

4. It has been found that solitary waves associated with both positive and negative potential due to the
presence of kappa distributed superthermal electron.

5. The amplitude of the positive K-dV soliton increases up to certain of α (i.e., ratio of electron and ion
temperature) and then it becomes infinity. On the other hand the amplitude of negative K-dV soliton
decreases from infinity with increasing the value of α. The amplitude of the negative K-dV soliton
becomes larger when increasing the spectral index k as well as the number density of negative ion
(µn), which is shown in figure 5.

6. The width of the K-dV soliton becomes smaller with increasing the values of α, µn and µe which is
shown in figure 6 and 7.

7. The existence of only positive mK-dV solitons is shown in figure 8. The amplitude of this soliton
becomes smaller with increasing the number density of electron (µe), the number density of negative
ions (µn) and the ratio of electron and ion temperature (α) but it slightly increases with spectral
index (k) which are shown in figures 8-10.

8. The reverse results are obtained in the case of width of this soliton in our present plasma model which
are shown in figures 11-12.

9. It is also clear from our investigation that the mK-dV equation is a higher order nonlinear equation
than our usual K-dV equation (depicted in figure 13).

10. The spectral index k has a great contribution on the forming of solitary as well as shock profiles. For
small values of k the superthermal electrons in the tail of velocity distribution function increases and,
vice versa. The superthermality effects on DIA shock profile are presented in figures 14 and 15.

11. The amplitude of the positive shock profile gradually increases with α, and it becomes infinity when
α ' 4.8. On the other hand, the magnitude of amplitude of the negative shock profile start to decreases
from α ' 6.

12. From this investigation, it is found that the width of the shock profile increases with the increase
of η. In addition, it can also be said that with the increase of dissipation, the shock waves become
smoother and weaker which is shown in figure 16.

In conclusion, the results which we obtained in our present investigation reveal that the relative temperature
ratio, presence of positive as well as negative ions, presence of stationary dust particles and superthermality
effect of electron play an important role in changing the phase speed, amplitude and width of the usual
solitary and shock waves. We hope that the study of this nonlinear propagation of DIA solitary and shock
waves should be useful in understanding the basic properties of the electrostatic disturbances in space and
laboratory dusty plasmas where inertial cold positive ions, superthermal (kappa distributed) electrons,
Maxwellian distributed negative ions and positively charged static dust are the major plasma species.
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