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Abstract We continue the recent study of our model theory of low-density cosmology without
dark matter. We assume a purely radiative spherically symmetric background and treat matter
as anisotropic perturbations. Einstein’s equations for the background are solved numerically. We
find two irregular singular points, one is the Big Bang and the other a Big Crunch. The radiation
temperature continues to decrease for another 0.21 Hubble times and then starts to increase towards
infinity. Then we derive the four evolution equations for the anisotropic perturbations. In the Regge-
Wheeler gauge there are three metric perturbations and a radial velocity perturbation. The solution
of these equations allow a detailed discussion of the cosmic evolution of the model universe under
study.
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1 Introduction

The nonstandard cosmology discussed in the present paper is a model cosmology without dark matter
or energy. To date, the existence of dark matter has not been established by the underground searches
with sensitive particle detectors. On the theoretical side there are some doubts concerning the existence
of dark matter in the framework of supersymmetric gauge theories due to a no-go theorem obtained in
the framework of causal perturbation theory in 2008 [1]. The nontrivial rotation curves in galaxies which
cannot be understood by Newtonian gravity may have an explanation within general relativity given in
[2]. But there is a high price for this solution of the puzzle: one has to give up the Copernican Principle
of homogeneity and instead advocate the Ptolemaic Principle that we live near the preferred place of
spherical symmetry of the Universe.

Our model theory does not correspond to our actual universe, and since it basically relies on analytical
methods, it does not incorporate most aspects from nucleosynthesis, baryon acoustic oscillations, galaxy
cluster dynamics, galaxy formation, and many more. However, it is hoped that the model serves as a
motivation to continue the search for alternatives or modificatons of the theory of general relativity.

In previous papers [3-6] the cosmic gravitational background field was described by a vacuum solution
of Einstein’s equations. However, for higher redshift radiation becomes important so that it is better to
include the main spherically symmetric part of CMB in the background from the very beginning. This
is our aim here, the paper is organized as follows. In the next section we discuss Einstein’s equations for
the radiation dominated background and specialize them to our Universe. In section 3 the equations are
numerically integrated. They have two irregular singular points: one is the Big Bang and the other in
the future is a Big Crunch. The measured Hubble diagram allows a precise calibration of the radiation
dominated background. The radiation temperature continues to decrease for another 0.21 Hubble times
and then it increases to infinity at the Big Crunch. In section 4 we introduce anisotropic perturbations.
As in the vacuum case we use the Regge-Wheeler gauge, however the perturbed energy-momentum tensor
must now have a radial velocity perturbation in addition to the density and pressure perturbations. As
a consequence we have four instead of three evolution equations to be solved. In the last section these
equations are derived in dimensionless form which is well suited for the numerical solution.

2 The Radiation Dominated Background

If we apply numerical calculations to our Universe the present velocity of light c = 3 × 1010 cm/sec
plays an important role. We therefore include c in all formulas from the very beginning and write our
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nonstandard line element as

ds2 = c2dt2 − X(t)2dr2 − R(t)2(dϑ2 + sin2 ϑdϕ2). (2.1)

The non-zero Christoffel symbols are equal to

Γ 0
11 = 1

c2 ẊX, Γ 0
22 = 1

c2 ṘR, Γ 0
33 = 1

c2 ṘR sin2 ϑ

Γ 1
01 = Ẋ

X
, Γ 2

02 = Ṙ

R
= Γ 3

03

Γ 2
33 = − sin ϑ cos ϑ, Γ 3

23 = cot ϑ (2.2)

and we need the following components of the Riemann tensor

R0
101 = X

c2 Ẍ, R0
202 = R

c2 R̈

R1
212 = R

c2 Ṙ
Ẋ

X
= R3

131, R3
232 = Ṙ2

c2 + 1, (2.3)

Rµ
µ = − 2

c2

(Ẍ

X
+ 2 R̈

R
+ 2 ṘẊ

RX
+ Ṙ2

R2 + c2

R2

)
. (2.4)

The mixed components of the Einstein tensor are given by

G0
0 = R0

0 − 1
2

R = 2
c2

ẊṘ

XR
+ Ṙ2

c2Rš
+ 1

R2 (2.5)

G1
1 = 1

c2

(
2 R̈

R
+ Ṙ2

R2

)
+ 1

R2 (2.6)

G2
2 = 1

c2

(Ẍ

X
+ R̈

R
+ ẊṘ

XR

)
= G3

3. (2.7)

We want to solve Einstein’s equation
Gµ

ν = 8πG

c4 T µ
ν (2.8)

with the relativistic energy-momentum tensor

T µ
ν = diag

(
ϱ, −ϱ

3
, −ϱ

3
, −ϱ

3

)
. (2.9)

Later on ϱ(t) represents the incoherent CMB radiation field while matter is treated as a perturbation.
According to (2.8) we have to solve the following three ordinary differential equations

2ẊṘR + X(Ṙ2 + c2) = 8πG

c2 ϱXR2 (2.10)

2RR̈ + Ṙ2 + c2 = −8πG

3c2 ϱR2 (2.11)

R2Ẍ + XRR̈ + RẊṘ = −8πG

3c2 ϱR2. (2.12)

Here ϱ(t) can be obtained from energy conservation in the form

ϱ = D(XR2)−4/3 (2.13)

where D is a constant of integration. Using this in (2.10-12), only two equations remain to be solved for R
and X, we take the first two (2.10-11). We reduce these equations to first order equations by substituting

Ṙ = u(R), X(t) = v(R) (2.14)
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such that
d

dt
= u

d

dR
. (2.15)

Then we obtain
2u2v′R + u2v = v

(8πG

c2 R2DR−8/3v−4/3 − c2
)

(2.16)

2Ru′u + u2 = −8πG

3c2 R2DR−8/3v−4/3 − c2
)

(2.17)

where the prime now stands for d/dR.
Our aim is to integrate the equations (2.16-17) from the present time t0 backwards towards the

Big Bang. To do so we need initial conditions u0 and v0 at some starting point R(t0) = R0, and the
constant D too. The latter follows from the present CMB temperature T0 = 2.725 K by means of the
Stefan-Boltzmann law

ϱ0 = aRT 4
0 = Dv

−4/3
0 R

−8/3
0 (2.18)

where
aR = 7.566 × 10−15erg/(cm3K4)

is the radiation constant. This gives

ϱ0 = 4.172 × 10−13g/(cm sec2) (2.19)

which allows to calculate D by (2.18). A second input is the Hubble constant defined by the redshift
according to

−H0 = dz

dt

∣∣∣
z=0

.

Since the redshift is given by

1 + z = X(t0)
X(t)

= v0

v
(2.20)

we have
H0 = v0

v2
dv

dt
|z=0 = v0

v2
0

v′
0

dR

dt

∣∣∣
z=0

=

= u0

v0
v′

0 = 1
TH

(2.21)

where TH is the Hubble time. The initial value v0 follows from the radial null geodesic

dr

dt
= 1

X(t)
= c(t). (2.22)

For t = t0 this yields the present light speed c so that

v0 = 1
c

. (2.23)

The derivative v′
0 is obtained from the differential equation (2.16). We get the following equation for u0

1
TH

= − u0

2R0
+ 1

2u0R0

(8πG

c2 R2
0ϱ0 − c2

)
. (2.24)

As in [1] we introduce dimensionless quantities denoted by bars:

ū = u

c
, R̄ = R

cTH
(2.25)

such that
d

dR
= 1

cTH
∂R̄.
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Note that v is already dimensionless. Then after dividing by c2 the differential equations (2.16-17) assume
the following dimensionless form:

v′ =
(

D1R̄−2/3v−4/3 − 1
)

v/(R̄ū2) − v/(2R̄) (2.26)

ū′ =
(

−D1

3
R̄−2/3v−4/3 − 1

)
/(2R̄ū) − ū/(2R̄). (2.27)

Now the prime means d/dR̄ and the new constant factor is equal to

D1 = 8πGc−14/3T
−2/3
H D = 8πGϱ0

T 2
H

c2 R̄
8/3
0 (2.28)

where (2.18) has been used. We calculate with the Hubble time [4]

TH = 13.58 × 109years, H0 = 72 km/(sMpc). (2.29)

Then we get
D1 = 1.430 × 10−4R̄

8/3
0 . (2.30)

The small factor 10−4 is the reason why the radiation-dominated background does not differ much from
the vacuum background. There remains R0 to be determined, this is done in the next section.

3 Numerical Integration of Einstein’s Equations

We integrate the equations (2.26-27) by using NDSolve of Mathematica. For the convenience of the reader
we give the short Mathematica file:

z = 1
R0 = 1.49
R1 = 1.65
d1 = 1.43 ∗ 10 ∧ (−4) ∗ R0 ∧ (8/3)
u0 = Sqrt[R0 ∗ R0 + d1 ∗ R0 ∧ (−2/3) − 1] − R0
so1 = NDSolve[
{v′[x] == d1 ∗ x ∧ (−2/3)v[x] ∧ (−4/3) − 1) ∗ v[x]/
(2 ∗ x ∗ u[x] ∧ 2) − v[x] ∗ 0.5/x,
u′[x] == (−(d1/3) ∗ x ∧ (−2/3) ∗ v[x] ∧ (−4/3) − 1)/
(2 ∗ u[x] ∗ x) − 0.5 ∗ u[x]/x,
u[R0] == u0, v[R0] == 1},
{u, v}, {x, R0, R1}, AccuracyGoal− > 10, P recisionGoal− > 10,
WorkingPrecision− > 15]
Plot[Evaluate[(u[x] + ((1.7111 − x) ∧ 0.5)/.so1],
{x, R0, R1}]
Plot[Evaluate[(v[x] − 2.596((1.7111 − x) ∧ 0.5)/.so1],
{x, R0, R1}]
so2 = NIntegrate[Evaluate[1/(u[x] ∗ v[x])/.so1],
{x.R0, R1}]
5 ∗ Log[10, −(1 + z) ∗ %] + 43.1
Here we have inserted the numbers for our Universe. It is hard to imagine a more fascinating computer

program. The initial value R̄0 = 1.49 has been chosen in such a way that for redshift z = 1 the correct
distance modulus µ(z = 1) = 44.08 in the Hubble diagram comes out. We have already used this
particular measured value in our previous calculations of the Hubble diagram [2]. For completeness let
us describe how the computation of the Hubble diagram goes. The redshift is given by

1 + z = Xobs

X(t)
= v0

v(R)
= 1/v̄(R̄). (3.1)
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The radial distance is obtained from the integral

r(R1) = cTH

R̄1∫
R̄0

dR̄

|ūv|
. (3.2)

This is computed as so2 in the program. The luminosity distance is equal to dL(z) = (1 + z)r(R1) which
then yields the distance modulus (in magnitude):

µ(z) = 5 log10 dL + 25. (3.3)

Using the value cTH = 4164 Mpc this gives the number 43.1 at the end of the program. To test the
correctness of this calibration of the program we have computed the Hubble diagram up to z = 10 and
compared it with the standard model value µ̃(z).The results are given in the following table. Comparing
the second and third columns we find perfect agreement of the Hubble diagrams.

z µ̃(z)(mag) µ(z)(mag) R̄ ū v

0.1 38.25 38.24 1.524 -0.350447 0.909636
0.2 39.89 39.88 1.551 -0.321348 0.834139
0.3 40.89 40.89 1.573 -0.296366 0.769321
0.4 41.62 41.62 1,5905 -0.27543 0.715005
0.5 42.20 42.20 1.6051 -0.257049 0.667317
0.6 42.69 42.68 1.6172 -0.241032 0.625763
0.7 43.10 43.10 1.6274 -0.226855 0.588984
0.8 43.46 43.46 1.6360 -0.214324 0.556476
0.9 43.79 43.78 1.6434 -0.203038 0.527196
1.0 44.08 44.08 1.6500 -0.192506 0.499873
2.0 46.05 46.04 1.6832 -0.128829 0.334697
3.0 47.22 47.21 1.6952 -0.0969382 0.251989
4.0 48.05 48.03 1.7008 -0.0779179 0.20267
5.0 48.70 48.68 1.7039 -0.0651086 0.169464
6.0 49.22 49.22 1.7059 -0.0553211 0.144097
7.0 49.67 49.64 1.707 -0.0491239 0.128038
8.0 50.05 50.01 1.7078 -0.0440776 0.114965
9.0 50.38 50.35 1.7084 -0.0398785 0.10409
10.0 50.68 50.66 1.7089 -0.0360087 0.0940699

Now comes fun. The Big Bang z = ∞ corresponds to a zero

v(Rb) = 0 (3.4)

of v(R̄) by (2.20). High precision calculation is necessary to find the Big Bang at R̄ = Rb = 1.7111 (we
omit the bar at Rb and remember that it is dimensionless, b stands for “Bang”). However, the step-size
goes to zero near R = Rb which indicates a singularity and indeed, the derivatives v′ and u′ diverge. To
understand the nature of this singularity we try an expansion in x = Rb − R̄:

ū = xn(b0 + b1x + . . .), v = xm(a0 + a1x + . . .). (3.5)

Then in lowest order we have

−2ū2v′(Rb − x) + ū2v = v
[
G1R

−2/3
b

(
1 + 2

3
x

Rb

)
v−4/3 − 1

]
(3.6)

−2ūū′(Rb − x) + u2 = −G1

3
R

−2/3
b

(
1 + 2

3
x

Rb

)
v−4/3 − 1 (3.6)

where G1 = 8πG. Substituting (3.5) and comparing the powers we obtain n = 1/2 − 2m/3 and the two
relations

b2
0 = − G2

2mRb
a

−4/3
0 , b2

0 = G2

6nRb
a

−4/3
0
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with G2 = G1R
−2/3
b . This requires m = 3/2 and n = −1/2 but a negative

b2
0 = − G2

3Rb
a

−4/3
0 .

Consequently there is no formal power series expansion at the Big Bang, it seems to be an irregular
singular point. Still we can use the numerical solution to calculate the age of the Universe:

TL =
Rb∫

R̄0

dr

|u(r)|
. (3.7)

The precise value of TL depends on Rb, for Rb = 1.7111 we get T0 = 1.2. Since this is in units of the
Hubble time, the Universe is older in nonstandard cosmology than in the standard one.

We have tested the accuracy of the numerical solution by integrating backwards from the Big Bang to
the present with the initial conditions of the forward calculation (6 digits). The most sensitive quantity
is v(R̄). For R1 = 1.7105 which corresponds to a redshift z = 19 the accuracy is better than 1%, but
for R1 = 1.711 and z = 45 the error is allready 3%. It is a challenge to integrate until the time of last
scattering at z = 1000.

It is a nice feature that apart from the singularities there is a simple analytic representation of the
solution, this is a consequence of the small number D1 (2.30). For D1 = 0 the two equations (2.26-27)
decouple and (2.27) has the solution

ū = −
√

Rb/R̄ − 1 (3.8)

where Rb now is a constant of integration. Inserting ū (3.8) into (2.26) we find the linear equation

2R̄
(

Rb/R̄ − 1
)

v′ + (Rb/R̄)v = 0 (3.9)

with the solution
v = β

√
Rb/R̄ − 1 (3.10)

where β is a second constant of integration. The value of β follows from the initial condition

β = v0

−u0
= 2.596. (3.11)

In the computer program we have compared this analytic representation with the numerical solution: For
ū(R̄) the accuracy is 10−5 and for v(R̄) it is 10−4, but close to Rb and R = 0 there are strong deviations.
For β = 1 the results (3.8), (3.10) agree with our previous Schwarzschild vacuum solution, we now have
a refined background.

There remains the singularity at R = 0 to be discussed. To understand the physics we calculate the
energy density by means of the analytic representation

ϱ = D(vR2)−4/3 = Dβ−4/3(Rb − R̄)−2/3R̄−2(cTH)−8/3. (3.12)

The energy density goes to infinity at the Big Bang Rb and at R = 0, too. That means R = 0 is the so-
called Big Crunch. Of course the analytic representation breaks down at the singularities, but in between
it is very accurate. So we set the derivative dϱ/dr = 0 and find a minimum of ϱ at

R̄M = 3
4

Rb = 1.283. (3.13)

That means the CMB temperature is continuing to decrease for a Hubble distance of (1.49−1.283)cTH =
0.21cTH , but then it increases towards a Big Crunch where it becomes infinite. The minimal CMB energy
density is 87% of the present energy density, this follows from(Rb − R̄M

Rb − R̄0

)−8/3( R̄M

R̄0

)−2
= 0.8684.
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Again we test whether a formal power series at the Big Crunch is possible. It must be of the form

u = b0

R
+ b2R + . . . , v = a0R + a2Rş + . . . (3.14)

where a0 and b0 are free integration constants. However no such expansion approximates the numerical
solution because v(R) goes to 0 for R → 0, but the numerical solution diverges. So the Big Crunch again
seems to be an irregular singular point.

Finally we must relate the metric function R to the cosmic time t. From

dR

dt
= −c

√
TL

R
− 1 (3.15)

with
TL = cTHRb (3.16)

we obtain

ct =
Rb∫

R

√
R

Rb − R
dR,

where the origin t = 0 is chosen at the Big Bang R̄ = Rb. The integral is again calculated by the
substitution

R = TL sin2 w. (3.17)

This yields the same result as in the vacuum background case

t = TL

c
(w − sin w cos w − π). (3.18)

Here the Big Bang corresponds to w = π/2 and w = π is the Big Crunch, TL (3.16) is the previous
life-time of the Universe [2]. In addition we have

v = X = β

√
TL

R
− 1 = β

√
1

sin2 w
− 1 = −β cot w (3.19)

where the sign of the square root must be chosen so that X is positive. This implies

u = Ṙ = −c

√
TL

R
− 1 = −c| cot w| (3.20)

and
dt

dw
= 2TL

c
sin2 w. (3.21)

To relate the variable w to the redshift we remember the relation

1 + z = 1
X

= 1
β| cot w|

. (3.21)

4 Anisotropic Perturbations

Now we consider anisotropic perturbations of the metric

gµν = g0µν + hµν (4.1)

where g0µν is the radiation-dominated background metric. It is our aim to construct an approximate
anisotropic solution of Einstein’s equations. Again this solution must have initial conditions. As before we
take these initial conditions from present astronomical observations, for example the accurately measured
anisotropies of CMB, and we integrate backwards towards the Big Bang. In standard cosmology one
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makes assumptions about the early Universe and integrates forward to the present. Our procedure is
logically better because different models can lead to almost the same observations as we have seen in the
case of the Hubble diagram, and assumptions about the early Universe are always uncertain.

In the case of the vacuum background, the cosmological perturbation theory has been treated in the
previous papers [2] and [3]. Now with the presence of radiation various changes are necessary, also the
light speed will be included from the beginning. The first order perturbation of the Ricci tensor is given
by the Palatini identity ([5], sect.9)

δRµν = 1
2

gαβ
0 [∇ν∇µhαβ − ∇α∇νhµβ − ∇α∇µhβν + ∇α∇βhµν ]. (4.2)

Then the perturbation of the Einstein tensor is equal to

δGµν = δRµν − 1
2

gµν

(
∇β∇αhαβ − ∇β∇βhα

α − hαβRαβ
)

−1
2

hµνR. (4.3)

Here we commute the covariant derivatives by means of the curvature tensor which gives [2]

2δGµν = −∇α∇αhµν + ∇νfµ + ∇µfν − 2Rβ
µανhα

β − ∇ν∇µhα
α − gµν(∇βfβ − ∇β∇βhα

α)+

+Rβ
ν hµβ + Rβ

µhνβ − Rhµν + gµνhαβRαβ (4.4)

where
fµ = ∇αhµα. (4.5)

The terms in the second line involve the background Ricci tensor. It vanishes by the unperturbed Ein-
stein’s equation if the background is source-free as in previous vacuum case. But now in the radiation
dominated background (2.9) these terms contribute, we shall denote them by 2Zµν . The terms in the first
line have already been calculated in ref.[3], they will be written with a tilde G̃. The covariant derivatives
refer to the background metric g0µν .

To separate the angular dependence in the perturbed Einstein’s equations

δGµν = 8πG

c4 δtµν (4.6)

we again use the Regge-Wheeler gauge [6] where hµν is of the form

hµν =


−c2H2 XH1 0 0
XH1 −X2H0 0 0

0 0 R2K 0
0 0 0 R2K sin2 ϑ

 Y m
l (ϑ.ϕ). (4.7)

Here Y m
l denote the spherical harmonics, the functions H0, H1, H2 and K depend on t and r only. Then

the fµ (4.5) are given by

f0 =
[
−∂0H2 − 1

X
∂1H1 − Ẋ

X
H0 −

(Ẋ

X
+ 2 Ṙ

R

)
H2 + 2 Ṙ

R
K

]
Y

f1 =
[X

c2 ∂0H1 + ∂1H0 + 2
c2

(
Ẋ + X

Ṙ

R

)
H1

]
Y (4.8)

f2 = −K∂2Y, f3 = −K∂3Y.

To determine the right side in (4.6) we consider the background energy-momentum tensor (2.9) as a
special case of the perfect fluid form

tµν = (ϱ + p)uµuν − pgµν

with ϱ = ϱ0, p = ϱ0/3 = p0 and uµ = (c, 0, 0, 0) = u0µ. Here ϱ0(t) is the background radiation energy
density (2.13), from now one we use the subscript 0 for the background. The nonspherical perfect fluid
perturbations have been studied in [7]. The (polar) perturbations consist of a density perturbation
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δϱ, an entropy perturbation or a pressure perturbation δp, and a 3-velocity perturbation. Adapted to
the Regge-Wheeler gauge (4.7) we only consider radial velocity perturbations δu1. Then the perturbed
energy-momentum tensor is given by

δtµν =


c2δϱ c(ϱ0 + p0)δu1 0 0

c(ϱ0 + p0)δu1 −X2δp 0 0
0 0 −R2δp 0
0 0 0 −R2δp sin2 ϑ

 Y m
l (ϑ, ϕ) − p0hµν . (4.9)

Note that δu0 = 0 by normalization uµuµ = c2.
From the vanishing non-diagonal elements in (4.9) we get two homogeneous linear equations in (4.6).

These equations are of the same form as in ref.[3], however, the equation for δG01 is lacking because
δt01 ̸= 0. From δG23 = 0 we obtain ([1],(3.2))

2δG23 = (cot ϑ∂3 − ∂3∂2)(H0 − H2)Y = 0. (4.10)

This yields the relation
H0(t, r) = H2(t, r). (4.11)

Next from δG02 = 0 we get ([1],(3.4))

2δG02 =
[
∂0(K − H0) − 1

X
∂1H1 + H0

( Ṙ

R
− Ẋ

X

)
−H2

( Ṙ

R
+ Ẋ

X

)]
∂2Y = 0.

For l > 1 this yields the first evolution equation

∂0(K − H2) = −q2

X
H3 + 2Ẋ

X
H2. (4.12)

Here we have used (4.11) and Fourier transformed quantities

f̂(R, q) = (2π)−1/2
∫

f(R, r)e−iqrdr. (4.13)

The function H3(t, q) stands for

H3 = H1

iq
. (4.14)

From δG03 = 0 the same equation is obtained.
The second evolution equation follows from ([3], (3.8))

2δG12 = [c2∂1(K + H2) + X∂0H1 + 2ẊH1]∂2Y = 0. (4.15)

After Fourier transformation this gives

X∂0H1 + ic2q(K + H2) + 2ẊH1 = 0.

The same equation is obtained from δG13 = 0. We shall use this equation in the form

∂0H3 = − c2

X
(K + H2) − 2Ẋ

X
H3. (4.16)

The calculation of

2δG01 = −∇α∇αh01 + ∇1f0 + ∇0f1 − 2Rβ
0α1hα

β − ∇1∇0hα
α+

+Rα
1 h0α + Rα

0 h1α − Rα
αh01 + g01hαβRαβ . (4.17)

requires important changes. The computation of

c2∇α∇αh01 = X∂2
0H1 +

(
Ẋ + 2 Ṙ

R
X

)
∂0H1 − c2

X
∂2

1H1−
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−2c2 Ẋ

X
∂1(H0 + H2) + c2 X

R2 l(l + 1)H1 −
(

4Ẋ2

X
+ 2 Ṙ2

R2 X
)

H1 (4.18)

goes as in [3] apart from the factors c2. Other pieces are

∇1f0 = −∂1∂0H2 − 1
X

∂2
1H1 − 2Ẋ

X
∂1H9 − ∂1H2

(Ẋ

X
+ 2 Ṙ

R

)
+

+2 Ṙ

R
∂1K − Ẋ

c2 ∂0H1 − 2
c2

(Ẋ2

X2 + Ẋ
Ṙ

R

)
H1 (4.19)

∇0f1 = X

c2 ∂0šH1 + ∂0∂1H0 + 2
c2

(
Ẍ + X

R̈

R
− X

Ṙ2

R2 − Ẋ2

X

)
H1+

+ 2
c2

(
Ẋ + X

Ṙ

R

)
∂0H1 − Ẋ

X
∂1H0.

The new terms in the second line of (4.17) yield

2
Y

Z01 = 2R1
1h01 − Rµ

µH01 = 2
c2 XH1

(
2 R̈

R
+ Ṙ2

Rš
+ c2

R2

)
. (4.20)

This result can be simplified by means of Einstein’s equations (2.10-12) for the background which we
now write in the form

R̈

R
= −1

2

( Ṙ2

R2 + c2

R2 + G3

3
ϱ0

)
ṘẊ

RX
= −1

2

( Ṙ2

R2 + c2

R2 + G3ϱ0

)
(4.21)

Ẍ

X
= Ṙ2

R2 + c2

R2 − 2
3

G3ϱ0

where
G3 = 8πG

c2 . (4.22)

Then the bracket in (4.21) simply becomes −G3ϱ0/3. This shows again that in the vacuum case ϱ0 = 0
these terms do not contribute.

Now we are ready to write down the total Einstein’s equation for δG01. We obtain

δG01

Y
= ∂1∂0K − Ṙ

R
∂1H2 +

( Ṙ

R
− Ẋ

X

)
∂1K − H1

[
X

l(l + 1)
2R2 + X

c2

( R̈

R
− ṘẊ

RX

)]
.

Using (4.21) again we get G3ϱ0/3 in the square bracket which compensates the new term Z01 (4.20).
Then we totally have

δG01

Y
= ∂1∂0K − Ṙ

R
∂1H2 +

( Ṙ

R
− Ẋ

X

)
∂1K − X

l(l + 1)
2R2 H1

= 4
3

G3

c2 ϱ0δu1. (4.23)

After radial Fourier transform (4.13) each derivative ∂1 gives a factor iq. Using H3 (4.14) this can be
divided out on the left side. This shows that for a nontrivial solution the radial velocity δu1 must have
a potential

δu1 = ∂1Φ. (4.24)

Then we obtain the following third evolution equation

∂0K = Ṙ

R
H2 +

(Ẋ

X
− Ṙ

R

)
K + +X

l(l + 1)
2R2 H3 + 4

3
G3

c2 ϱ0Φ. (4.25)
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But now we need a forth evolution equation for the velocity potential Φ. This is derived in the next
section from the diagonal components of the perturbed Einstein’s equation (4.6). Using (4.25) in (4.12)
we get

∂0H2 =
( Ṙ

R
− 2Ẋ

X

)
H2 +

(Ẋ

X
− Ṙ

R

)
K+

+H3

(q2

X
+ X

l(l + 1)
2R2

)
+4

3
G3

c2 ϱ0Φ. (4.26)

Until now we have worked out the non-diagonal elements of the perturbed Einstein’s equations. To
get a closed system of evolution equations for all perturbations we must now investigate the diagonal
elements also.

5 Evolution of the Perturbations

For the diagonal components we need various large pieces which are given in the appendix. We first
calculate δG11 starting with

c2∇α∇αh11 = −X2∂2
0H0 + c2∂2

1H0 −
(

XẊ + 2X2 Ṙ

R

)
∂0H0+

+4Ẋ∂1H1 + 2Ẋ2H2 + H0

(
2Ẋ2 − c2X2 l(l + 1)

R2

)
. (5.1)

With
c2∇1f1 = X∂1∂0H1 + c2∂2

1H0 + (3Ẋ + 2X
Ṙ

R
)∂1H1+

+XẊ∂0H2 + Ẋ2H0 + (Ẋ2 + 2XẊ
Ṙ

R
)H2 − 2XẊ

Ṙ

R
K (5.2)

we finally obtain

2c2 δG̃11

X2Y
= 2∂2

0K − 2 Ṙ

R
∂0H2 + 6 Ṙ

R
∂0K − 2

( R̈

R
+ Ṙ2

R2

)
H2−

−2 ṘẊ

RX
H0 + 2K

( R̈

R
+ Ṙ2

R2 + ṘẊ

RX
) + c2 l(l + 1)

R2 (H2 + K). (5.3)

In case of the vacuum background this vanishes if the evolution equations are taken into account. There-
fore we now also differentiate (4.25) and substitute the first derivatives by (4.16), (4.25) and (4.26)
yielding

∂2
0K = K

(Ẍ

X
− R̈

R
− ṘẊ

RX
+ Ṙ2

R2 − c2 l(l + 1)
2R2 − G3

ϱ0

X

)
+

+H2

( R̈

R
− ṘẊ

RX
− Ṙ2

R2 − c2 l(l + 1)
2R2 − G3

ϱ0

X

)
+

H3

(q2

X

Ṙ

R
− X

Ṙ

R

l(l + 1)
R2 − G3

c2 ϱ0
Ẋ

X
+ G3

c2 ϱ̇0

)
+4

3
G3

c2

(
ϱ0Φ

Ẋ

X
+ ϱ̇0Φ + ϱ0ϕ̇

)
. (5.4)

Now we are ready to simplify (5.3). Substituting all temporal derivatives by the expressions without
derivatives we see a great cancellation:

c2 δG̃11

X2Y
= G3

c2 ϱ0Φ
[4

3
Ẋ

X
+ 8

3
Ṙ

R

)
+

+4
3

G3

c2

[
ϱ0∂0Φ − 4

3
Φ

(Ẋ

X
+ 2 Ṙ

R

)]
+K

(Ẍ

X
+ 2 ṘẊ

RX

)
. (5.5)

Here we can use (4.21) in the last term, then the coefficient of K becomes G3ϱ0/3 which is proportional
to ϱ0, too, as it must be. For the total δG11 we must add the additional terms from the second line of
(4.4)

Z11

Y
= G3

2c2 ϱ0X2(H2 − K

3
). (5.6)
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Using energy conservation

ϱ̇0 = −4
3

ϱ0

(Ẋ

X
+ 2 Ṙ

R

)
(5.7)

we end up with
c2 δG11

X2Y
= G3ϱ0

[
H2 − 2K

)
+4

3
G3

c2 ϱ0∂0Φ−

−4
9

G3

c2 ϱ0Φ
(Ẋ

X
+ 2 Ṙ

R

)
= −G3δp. (5.8)

The last equality is Einstein’s equation (4.6).
The calculation of δG22 is simpler. The various contributions are collected in the appendix. The final

result without Z22 is given by

2c2 δG̃22

R2Y
= ∂2

0(K − H2) − c2

X2 ∂2
1(K + H2) − 2

X
∂0∂1H1+

+
(

2 Ṙ

R
+ Ẋ

X

)
∂0K −

( Ṙ

R
+ Ẋ

X

)
∂0H2 − 2

( Ẋ

X2 + Ṙ

RX

)
∂1H1−

−
(

2Ẋ

X
+ Ṙ

R

)
∂0H0 −

(Ẍ

X
+ 2 ṘẊ

RX

)
(H2 + H0)+

+2K
( R̈

R
+ c2

R2 + Ṙ2

R2 + ṘẊ

RX

)
. (5.9)

Using H0 = H2 and going over to the Fourier transformed quantities we find

2c2 δG̃22

R2Y
= ∂2

0(K − H2) + c2 q2

X2 (K + H2) + 2q2

X
∂0H3+

+
(Ẋ

X
+ 2 Ṙ

R

)
∂0K −

(
3Ẋ

X
+ 2 Ṙ

R

)
∂0H2 + 2q2

( Ẋ

X2 + Ṙ

RX

)
H3−

−2
(Ẍ

X
+ 2 ṘẊ

RX

)
H2 + 2K

( R̈

R
+ c2

R2 + Ṙ2

R2 + ṘẊ

RX

)
. (5.10)

Here in the first term with ∂2
0 we substitute the difference of (4.25) and (4.26) and we express all first

derivatives by the previous formulas. Then again there is a huge cancellation which is expected because
in the vacuum case the result is 0. By (4.21) we now get the simple result

2c2 δG̃22

R2Y
= −4

3
G3Kϱ0.

Adding the additional term Z22 we arrive at

c2 δG22

R2Y
= G3

3
ϱ0(H2 − 3K) = G3δp (5.11)

where again the last equality is Einstein’s equation. The simple result (5.11) for the pressure perturbation
can be substituted into (5.8). Then we obtain the desired evolution equation for the velocity potential Φ:

∂0Φ = 1
3

(Ẋ

X
+ 2 Ṙ

R

)
Φ +

(9
4

K − H2)c2. (5.12)

In principle we now have obtained four evolution equations (4.16), (4.25-26) and (5.12) for all per-
turbed modes. However to integrate the equations from the present time backwards to the Big Bang we
need four initial conditions. The best measured quantities for this purpose are the CMB anisotropies
which according to (5.11) give H2 − 3K because this is known from the radiation pressure δp. To find
K and H2 separately we must investigate δG00 which yields the total energy density (radiation plus
matter).
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Appendix

The following results are needed for all diagonal components of the perturbed Einstein’s equations:

2c2 ∇αfα

Y
= −∂2

0H2 − c2

X2 ∂2
1H0 − 2

X
∂0∂1H1 − ∂1H1

(
2Ẋ

X
+ 4 Ṙ

R

)
−

−2∂0H2

(Ẋ

X
+ 2 Ṙ

R

)
−Ẋ

X
∂0H0 + 2 Ṙ

R
∂0K − H0

(Ẍ

X
+ 2 ṘẊ

RX

)
+

+K
(

2 R̈

R
+ 2 Ṙ2

R2 + 2 ṘẊ

RX
− c2 l(l + 1)

R2

)
−H2

(Ẍ

X
+ 2 R̈

R
+ 2 Ṙš

R2 + 4 ṘẊ

RX

)
. (A.1)

∇µ∇µhα
α =

( 1
c2 ∂2

0 − 1
X2 ∂2

1 + l(l + 1)
R2

)
(H0 − H2 − 2K)Y +

+ 1
c2

(Ẋ

X
+ 2 Ṙ

R

)
∂0(H0 − H2 − 2K)Y, (A.2)

so that
c2

Y

(
∇αfα − ∇β∇βhα

α

)
= ∂2

0(2K − H0) − c2

X2 ∂1š(2K − H2) − 2
X

∂0∂1H1−

−
(

2 Ẋ

X2 + 4 Ṙ

XR

)
∂1H1 −

(
2Ẋ

X
+ 2 Ṙ

R

)
∂0H0 −

(Ẋ

X
+ 2 Ṙ

R

)
∂0H2+

+
(

2Ẋ

X
+ 6 Ṙ

R

)
∂0K −

(Ẍ

X
+ 2ẊṘ

XR

)
H0 −

(Ẍ

X
+ 2 R̈

R
+ 2 Ṙ2

R2 + 4ẊṘ

XR

)
H2+

+
(

2 R̈

R
+ 2 Ṙ2

R2 + 2ẊṘ

XR

)
K + c2 l(l + 1)

R2 (H2 − H0 + K). (A.4)

For δG22 we need
c2

R2 ∇α∇αh22 = ∂2
0K +

(
2 Ṙ

R
+ Ẋ

X

)
∂0K − c2

X2 ∂2
1K+

+c2 l(l + 1)
R2 K + 2 R̄2

Rš
H2 − 2 Ṙš

R2 K (A.5)

and
∂2f2 = ∂2f2 − Γ 0

22f0 =

= −K∂2
2Y − RṘ

c2

[
−∂0H2 − 1

X
∂1H1 − Ẋ

X
(H0 + H2) + 2 Ṙ

R
(K − H2)

]
Y. (A.6)

From the Riemann tensor we get

−2R0
202H0 = 2 R

c2 R̈H2Y

−2R1
212H0 = −2 R

c2
ṘẊ

X
H0Y (A.7)

In addition we have
∇2∇2hα

α = ∂2
2hα

α − Γ 0
22∂0hα

α =

= (H0 − H2 − 2K)∂2
2Y − RṘ

c2 ∂0(H0 − H2 − 2K). (A.8)
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Obituary

Prof. Dr. Günter Robert Scharf was born on September 19, 1938, in Nordhausen, Germany. He died on
August 16, 2020, near Zürich, Switzerland, after a short illness due to a fall at home.

He was my esteemed doctoral adviser at the University of Zürich.
Günter enrolled in 1958 at the University of Göttingen to study physics, and continued his studies

at the University of Giessen in the following year. The fact that Scharf lost a leg in a tragic motorcycle
accident never stopped him from continuing his scientific career; thanks to a foreign exchange scholarship,
Scharf was able to continue his studies at the Swiss Federal Institute of Technology in Zürich (ETHZ),
where he wrote his diploma thesis under the supervision of Prof. Dr. Res Jost in 1962.

In 1965, Günter finished his Ph.D. thesis Fastperiodische Potentiale under the supervision of Prof. Dr.
Armin Thellung (1924-2003), who was one of the last Ph.D. students and assistants of Wolfgang Pauli.

Günter Scharf has written three excellent books:

– Finite Quantum Electrodynamics (Springer, 1989/1995; Dover, 2014), in which he shows how one can
avoid ultraviolet divergences in QED by making use of causality and distribution theory.

– Quantum Gauge Theories : A True Ghost Story (Wiley, 2001; Dover 2016). In this book, the causal
method is extended to gauge theories.

– From Electrostatics to Optics (Springer, 1994) is an excellent textbook containing a concise introduc-
tion to classical electrodynamics.

The causal approach to quantum field theory advocated during the last 35 years by Günter Scharf
as his major research interest goes back to a classic paper by Henri Epstein and Vladimir Glaser [9].
The method has the great advantage that it uses mathematically well-defined objects only, namely free
asymptotic fields. Therefore all mathematical operations have a precise meaning in the framework of
distribution theory, in particular, there are no ultraviolet divergences. The method has been applied
to abelian, massless non-abelian and to massive non-abelian gauge theories. In the latter case one ob-
tains the complete structure of the standard electroweak theory as a consequence of (quantum) gauge
invariance, without relying explicitly on the concept of spontaneous symmetry breaking. In the case of
spin-2 gauge fields on a flat background gauge invariance alone leads to the same couplings as given by
Einstein’s theory.

Andreas Aste
September 9, 2020
Basel, Switzerland
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