Hariwan Z. Ibrahim^{*}

Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq Email: hariwan_math@yahoo.com

Abstract The main purpose of the present paper is to introduce a new class of functions called almost β - γ -continuous functions which is contained in the class of almost β -continuous functions and contains the class of β - γ -continuous functions.

Keywords: β - γ -open, almost β - γ -continuous.

1 Introduction

Kasahara [10] defined an operation α on a topological space to introduce α -closed graphs. Following the same technique, Ogata [16] defined an operation γ on a topological space and introduced γ -open sets. Hariwan [7] introduced a type of continuity called β - γ -continuous function. Nasef and Noiri [13] introduced the notion of almost β -continuity.

In this paper, we introduce a new class of functions called almost β - γ -continuous functions which is contained in the class of almost β -continuous functions and contains the class of β - γ -continuous functions. We obtain basic properties of almost β - γ -continuous functions.

2 Preliminaries

Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. Let (X, τ) be a space and A a subset of X. An operation γ [10] on a topology τ is a mapping from τ into power set P(X) of X such that $V \subseteq \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ -open [16] if for each $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U) \subseteq A$. Then, τ_{γ} denotes the set of all γ -open set in X. Clearly $\tau_{\gamma} \subseteq \tau$. Complements of γ -open sets are called γ -closed. The τ_{γ} -interior [18] of A is denoted by τ_{γ} -Int(A) and defined to be the union of all γ -open sets of X contained in A. A subset A of a space X is said to be β - γ -open [8] if $A \subseteq Cl(\tau_{\gamma}$ -Int(Cl(A))). A subset A of X is called β - γ -closed [7] if and only if its complement is β - γ -open.

Definition 2.1. A subset A of a space X is said to be

- 1. α -open [14] if $A \subseteq Int(Cl(Int(A)))$.
- 2. semi-open [11] if $A \subseteq Cl(Int(A))$.
- 3. preopen [12] if $A \subseteq Int(Cl(A))$.
- 4. β -open [1] if $A \subseteq Cl(Int(Cl(A)))$.

Definition 2.2. The intersection of all preclosed (resp., semi-closed, α -closed) sets of X containing A is called the preclosure [6] (resp., semi-closure [4], α -closure [17]) of A.

Definition 2.3. [19] The δ -interior of a subset A of X is the union of all regular open sets of X contained in A. The subset A is called δ -open if $A = Int_{\delta}(A)$, i.e. a set is δ -open if it is the union of regular open sets. The complement of a δ -open set is called δ -closed. Alternatively, a set $A \subseteq X$ is called δ -closed if $A = Cl_{\delta}(A)$, where $Cl_{\delta}(A) = \{x \in X : Int(Cl(U)) \cap A \neq \phi, U \in \tau \text{ and } x \in U\}$.

Proposition 2.4. [2] A subset A of a space X is β -open if and only if Cl(A) is regular closed.

Theorem 2.5. [1] Let A be any subset of a space X. Then $A \in \beta O(X)$ if and only if Cl(A) = Cl(Int(Cl(A))).

Theorem 2.6. Let A be a subset of a topological space (X, τ) . Then:

1. If $A \in SO(X)$, then pCl(A) = Cl(A) [5].

2. If $A \in \beta O(X)$, then $\alpha Cl(A) = Cl(A)$ [3].

3. If $A \in \beta O(X)$, then $Cl_{\delta}(A) = Cl(A)$ [20].

Lemma 2.7. [9] Let A be a subset of a space (X, τ) . Then $A \in PO(X, \tau)$ if and only if sCl(A) = Int(Cl(A)).

Definition 2.8. Let A be any subset of a topological space (X, τ) and γ be an operation on τ . Then:

- 1. The union of all β - γ -open sets contained in A is called the β - γ -interior of A and is denoted by β - $\gamma Int(A)$.
- 2. The intersection of all β - γ -closed sets containing A is called the β - γ -closure of A and is denoted by β - $\gamma Cl(A)$.

Definition 2.9. [7] A function $f: (X, \tau) \to (Y, \sigma)$ is said to be β - γ -continuous if for every open set V of $Y, f^{-1}(V)$ is β - γ -open in X.

Definition 2.10. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be β - γ -continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists a β - γ -open set U containing x such that $f(U) \subseteq V$.

Definition 2.11. [13] A function $f : (X, \tau) \to (Y, \sigma)$ is called almost β -continuous at $x \in X$ if for every open set V in Y containing f(x), there exists a β -open set U in X containing x such that $f(U) \subseteq Int(Cl(V))$. If f is almost β -continuous at every point of X, then it is called almost β -continuous.

Definition 2.12. [15] A space X is said to be semi-regular if for any open set U of X and each point $x \in U$, there exists a regular open set V of X such that $x \in V \subseteq U$.

3 Almost β - γ -Continuous

Definition 3.1. A function $f: (X, \tau) \to (Y, \sigma)$ is called almost β - γ -continuous at a point $x \in X$ if for each $x \in X$ and each open set V of Y containing f(x), there exists a β - γ -open set U of X containing x such that $f(U) \subseteq Int(Cl(V))$. If f is almost β - γ -continuous at every point of X, then it is called almost β - γ -continuous.

Example 3.2. Consider $X = \{1, 2, 3\}$ with the discrete topology τ on X. Define an operation γ on τ by

$$\gamma(A) = \begin{cases} A & \text{if } A = \{1, 3\} \\ X & \text{otherwise.} \end{cases}$$

And define a function $f: (X, \tau) \to (X, \sigma)$ as follows:

$$f(x) = \begin{cases} 1 & \text{if } x = 1 \\ 2 & \text{if } x = 2 \\ 3 & \text{if } x = 3 \end{cases}$$

Then, f is not β - γ -continuous.

Remark 3.3. It easily follows that β - γ -continuity implies almost β - γ -continuity and almost β - γ -continuity implies almost β -continuity. However, the converses are not true as the following example shows.

Example 3.4. Consider $X = \{a, b, c\}$ with the topology $\tau = \sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Define an operation γ on τ by $\gamma(A) = A$ for all $A \in \tau$. Define a function $f : (X, \tau) \to (X, \sigma)$ as follows:

$$f(x) = \begin{cases} c & \text{if } x = a \\ b & \text{if } x = b \\ a & \text{if } x = c \end{cases}$$

Then f is almost β - γ -continuous but not β - γ -continuous, because $\{a\}$ is an open set in (X, σ) containing f(c) = a, but there exists no β - γ -open set U in (X, τ) containing c such that $f(U) \subseteq \{a\}$.

And we define an operation γ on τ by $\gamma(A) = X$ for all $A \in \tau$. Then f is almost β -continuous but is not almost β - γ -continuous.

Theorem 3.5. For a function $f: (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- 1. f is almost β - γ -continuous.
- 2. For each $x \in X$ and each open set V of Y containing f(x), there exists a β - γ -open set U in X containing x such that $f(U) \subseteq sCl(V)$.
- 3. For each $x \in X$ and each regular open set V of Y containing f(x), there exists a β - γ -open set U in X containing x such that $f(U) \subseteq V$.
- 4. For each $x \in X$ and each δ -open set V of Y containing f(x), there exists a β - γ -open set U in X containing x such that $f(U) \subseteq V$.

Proof. (1) \Rightarrow (2). Let $x \in X$ and let V be any open set of Y containing f(x). By (1), there exists a β - γ -open set U of X containing x such that $f(U) \subseteq Int(Cl(V))$. Since V is open and hence V is preopen set. By Lemma 2.7, Int(Cl(V)) = sCl(V). Therefore, $f(U) \subseteq sCl(V)$.

 $(2) \Rightarrow (3)$. Let $x \in X$ and Let V be any regular open set of Y containing f(x). Then V is an open set of Y containing f(x). By (2), there exists a β - γ -open set U in X containing x such that $f(U) \subseteq sCl(V)$. Since V is regular open and hence is preopen set. By Lemma 2.7, sCl(V) = Int(Cl(V)). Therefore, $f(U) \subseteq Int(Cl(V))$. Since V is regular open, then $f(U) \subseteq V$.

(3) \Rightarrow (4). Let $x \in X$ and Let V be any δ -open set of Y containing f(x). Then for each $f(x) \in V$, there exists an open set G containing f(x) such that $G \subseteq Int(Cl(G)) \subseteq V$. Since Int(Cl(G)) is regular open set of Y containing f(x). By (3), there exists a β - γ -open set U in X containing x such that $f(U) \subseteq Int(Cl(G)) \subseteq V$. This completes the proof.

(4) \Rightarrow (1). Let $x \in X$ and Let V be any open set of Y containing f(x). Then Int(Cl(V)) is δ -open set of Y containing f(x). By (4), there exists a β - γ -open set U in X containing x such that $f(U) \subseteq Int(Cl(V))$. Therefore, f is almost β - γ -continuous.

Theorem 3.6. For a function $f: (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- 1. f is almost β - γ -continuous.
- 2. $f^{-1}(Int(Cl(V)))$ is β - γ -open set in X, for each open set V in Y.
- 3. $f^{-1}(Cl(Int(F)))$ is β - γ -closed set in X, for each closed set F in Y.
- 4. $f^{-1}(F)$ is β - γ -closed set in X, for each regular closed set F of Y.
- 5. $f^{-1}(V)$ is β - γ -open set in X, for each regular open set V of Y.

Proof. (1) \Rightarrow (2). Let V be any open set in Y. We have to show that $f^{-1}(Int(Cl(V)))$ is β - γ -open set in X. Let $x \in f^{-1}(Int(Cl(V)))$. Then $f(x) \in Int(Cl(V))$ and Int(Cl(V)) is a regular open set in Y. Since f is almost β - γ -continuous. Then by Theorem 3.5, there exists a β - γ -open set U of X containing x such that $f(U) \subseteq Int(Cl(V))$. Which implies that $x \in U \subseteq f^{-1}(Int(Cl(V)))$. Therefore, $f^{-1}(Int(Cl(V)))$ is β - γ -open set in X.

(2) \Rightarrow (3). Let *F* be any closed set of *Y*. Then $Y \setminus F$ is an open set of *Y*. By (2), $f^{-1}(Int(Cl(Y \setminus F)))$ is β - γ -open set in *X* and $f^{-1}(Int(Cl(Y \setminus F))) = f^{-1}(Int(Y \setminus Int(F))) = f^{-1}(Y \setminus Cl(Int(F))) = X \setminus f^{-1}(Cl(Int(F)))$ is β - γ -open set in *X* and hence $f^{-1}(Cl(Int(F)))$ is β - γ -closed set in *X*.

(3) \Rightarrow (4). Let F be any regular closed set of Y. Then F is a closed set of Y. By (3), $f^{-1}(Cl(Int(F)))$ is β - γ -closed set in X. Since F is regular closed set. Then $f^{-1}(Cl(Int(F))) = f^{-1}(F)$. Therefore, $f^{-1}(F)$ is β - γ -closed set in X.

(4) \Rightarrow (5). Let V be any regular open set of Y. Then $Y \setminus V$ is regular closed set of Y and by (4), we have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is β - γ -closed set in X and hence $f^{-1}(V)$ is β - γ -open set in X.

(5) \Rightarrow (1). Let $x \in X$ and let V be any regular open set of Y containing f(x). Then $x \in f^{-1}(V)$. By (5), we have $f^{-1}(V)$ is β - γ -open set in X. Therefore, we obtain $f(f^{-1}(V)) \subseteq V$. Hence by Theorem 3.5, f is almost β - γ -continuous.

Theorem 3.7. For a bijection function $f: (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- 1. f is almost β - γ -continuous.
- 2. $f(\beta \gamma Cl(A)) \subseteq Cl_{\delta}(f(A))$, for each subset A of X.
- 3. $\beta \gamma Cl(f^{-1}(B)) \subseteq f^{-1}(Cl_{\delta}(B))$, for each subset B of Y.
- 4. $f^{-1}(F)$ is β - γ -closed set in X, for each δ -closed set F of Y.
- 5. $f^{-1}(V)$ is β - γ -open set in X, for each δ -open set V of Y.
- 6. $f^{-1}(Int_{\delta}(B)) \subseteq \beta \gamma Int(f^{-1}(B))$, for each subset B of Y.
- 7. $Int_{\delta}(f(A)) \subseteq f(\beta \gamma Int(A))$, for each subset A of X.

Proof. (1) \Rightarrow (2). Let A be a subset of X. Since $Cl_{\delta}(f(A))$ is δ -closed set in Y, it is denoted by $\cap \{F_{\alpha}: F_{\alpha} \in RC(Y), \alpha \in \Delta\}$, where Δ is an index set. Then, we have $A \subseteq f^{-1}(Cl_{\delta}(f(A))) = f^{-1}(\cap \{F_{\alpha}: f(A)\})$ $\alpha \in \Delta$ }) = $\cap \{f^{-1}(F_{\alpha}) : \alpha \in \Delta\}$. By (1) and Theorem 3.6, $f^{-1}(Cl_{\delta}(f(A)))$ is β - γ -closed set of X. Hence $\beta - \gamma Cl(A) \subseteq f^{-1}(Cl_{\delta}(f(A)))$. Therefore, we obtain $f(\beta - \gamma Cl(A)) \subseteq Cl_{\delta}(f(A))$.

 $(2) \Rightarrow (3). \text{ Let } B \text{ be any subset of } Y. \text{ Then } f^{-1}(B) \text{ is a subset of } X. \text{ By } (2), \text{ we have } f(\beta - \gamma Cl(f^{-1}(B))) \subseteq Cl_{\delta}(f(f^{-1}(B))) = Cl_{\delta}(B). \text{ Hence } \beta - \gamma Cl(f^{-1}(B)) \subseteq f^{-1}(Cl_{\delta}(B)).$ (3) \Rightarrow (4). Let F be any δ -closed set of Y. By (3), we have $\beta - \gamma Cl(f^{-1}(F))) \subseteq f^{-1}(Cl_{\delta}(F)) = f^{-1}(F)$

and hence $f^{-1}(F)$ is β - γ -closed set in X.

(4) \Rightarrow (5). Let V be any δ -open set of Y. Then $Y \setminus V$ is δ -closed set of Y and by (4), we have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is β - γ -closed set in X. Hence $f^{-1}(V)$ is β - γ -open set in X.

(5) \Rightarrow (6). For each subset B of Y. We have $Int_{\delta}(B) \subseteq B$. Then $f^{-1}(Int_{\delta}(B)) \subseteq f^{-1}(B)$. By (5), $f^{-1}(Int_{\delta}(B))$ is β - γ -open set in X. Then $f^{-1}(Int_{\delta}(B)) \subseteq \beta$ - $\gamma Int(f^{-1}(B))$.

 $(6) \Rightarrow (7)$. Let A be any subset of X. Then f(A) is a subset of Y. By (6), we obtain that $f^{-1}(Int_{\delta}(f(A))) \subseteq$ $\beta - \gamma Int(f^{-1}(f(A)))$. Hence $f^{-1}(Int_{\delta}(f(A))) \subseteq \beta - \gamma Int(A)$, which implies that $Int_{\delta}(f(A)) \subseteq f(\beta - \gamma Int(A))$. $(7) \Rightarrow (1)$. Let $x \in X$ and V be any regular open set of Y containing f(x). Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is a subset of X. By (7), we get $Int_{\delta}(f(f^{-1}(V))) \subseteq f(\beta - \gamma Int(f^{-1}(V)))$ which implies that $Int_{\delta}(V) \subseteq f(\beta - \gamma Int(f^{-1}(V)))$ $\gamma Int(f^{-1}(V))$). Since V is regular open set and hence is δ -open set, then $V \subseteq f(\beta - \gamma Int(f^{-1}(V)))$. This implies that $f^{-1}(V) \subseteq \beta - \gamma Int(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is $\beta - \gamma$ -open set in X which contains x and clearly $f(f^{-1}(V)) \subseteq V$. Hence, by Theorem 3.5, f is almost β - γ -continuous.

Theorem 3.8. For a function $f: (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- 1. f is almost β - γ -continuous.
- 2. $\beta \gamma Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$, for each β -open set V of Y.
- 3. $f^{-1}(Int(F)) \subseteq \beta \gamma Int(f^{-1}(F))$, for each β -closed set F of Y.
- 4. $f^{-1}(Int(F)) \subseteq \beta \gamma Int(f^{-1}(F))$, for each semi-closed set F of Y.
- 5. $\beta \gamma Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$, for each semi-open set V of Y.

Proof. (1) \Rightarrow (2). Let V be any β -open set of Y. It follows from Proposition 2.4, that Cl(V) is regular closed set in Y. Since f is almost β - γ -continuous. Then by Theorem 3.6, $f^{-1}(Cl(V))$ is β - γ -closed set in X. Therefore, we obtain $\beta - \gamma Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$.

(2) \Leftrightarrow (3). Let F be any β -closed set of Y. Then $Y \setminus F$ is β -open set of Y and by (2), we have β - $\begin{array}{l} \gamma Cl(f^{-1}(Y \setminus F)) \subseteq f^{-1}(Cl(Y \setminus F)) \Leftrightarrow \beta - \gamma Cl(X \setminus f^{-1}(F)) \subseteq f^{-1}(Y \setminus Int(F)) \Leftrightarrow X \setminus \beta - \gamma Int(f^{-1}(F)) \subseteq X \setminus f^{-1}(Int(F)). \end{array}$

 $(3) \Rightarrow (4)$. This is obvious since every semi-closed set is β -closed set.

(4) \Rightarrow (5). Let V be any semi-open set of Y. Then $Y \setminus V$ is semi-closed set and by (4), we have $f^{-1}(Int(Y \setminus V)) \subseteq \beta - \gamma Int(f^{-1}(Y \setminus V)) \Leftrightarrow f^{-1}(Y \setminus Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(Cl(V)) \subseteq \beta - \gamma Int(X \setminus f^{-1}(V))$ $X \setminus \beta - \gamma Cl(f^{-1}(V))$. Therefore, $\beta - \gamma Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$.

 $(5) \Rightarrow (1)$. Let F be any regular closed set of Y. Then F is semi-open set of Y. By (5), we have β - $\gamma Cl(f^{-1}(F)) \subseteq f^{-1}(Cl(F)) = f^{-1}(F)$. This shows that $f^{-1}(F)$ is $\beta - \gamma$ -closed set in X. Therefore, by Theorem 3.6, f is almost β - γ -continuous.

Theorem 3.9. For a function $f: (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- 1. f is almost β - γ -continuous.
- 2. β - $\gamma Cl(f^{-1}(V)) \subseteq f^{-1}(\alpha Cl(V))$, for each β -open set V of Y.
- 3. $\beta \gamma Cl(f^{-1}(V)) \subseteq f^{-1}(Cl_{\delta}(V))$, for each β -open set V of Y.

4. $\beta - \gamma Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$, for each semi-open set V of Y. 5. $\beta - \gamma Cl(f^{-1}(V)) \subseteq f^{-1}(pCl(V))$, for each semi-open set V of Y.

Proof. (1) \Rightarrow (2). Follows from Theorem 3.8 and Theorem 2.6 (2). (2) \Rightarrow (3). This is obvious since $\alpha Cl(V) \subseteq Cl_{\delta}(V)$ in general. (3) \Rightarrow (4) and (4) \Rightarrow (5). Follows from Theorem 2.6. (5) \Rightarrow (1). Follows from Theorem 3.8 and Theorem 2.6 (1).

Corollary 3.10. For a function $f: X \to Y$, the following statements are equivalent:

1. f is almost β - γ -continuous. 2. $f^{-1}(\alpha Int(F)) \subseteq \beta$ - $\gamma Int(f^{-1}(F))$, for each β -closed set F of Y. 3. $f^{-1}(Int_{\delta}(F)) \subseteq \beta$ - $\gamma Int(f^{-1}(F))$, for each β -closed set F of Y. 4. $f^{-1}(Int(F)) \subseteq \beta$ - $\gamma Int(f^{-1}(F))$, for each semi-closed set F of Y. 5. $f^{-1}(pInt(F)) \subseteq \beta$ - $\gamma Int(f^{-1}(F))$, for each semi-closed set F of Y.

Theorem 3.11. A function $f : X \to Y$ is almost β - γ -continuous if and only if $f^{-1}(V) \subseteq \beta$ - $\gamma Int(f^{-1}(Int(Cl(V))))$ for each preopen set V of Y.

Proof. Necessity. Let V be any preopen set of Y. Then $V \subseteq Int(Cl(V))$ and Int(Cl(V)) is regular open set in Y. Since f is almost β - γ -continuous, by Theorem 3.6, $f^{-1}(Int(Cl(V)))$ is β - γ -open set in X and hence we obtain that $f^{-1}(V) \subseteq f^{-1}(Int(Cl(V))) = \beta - \gamma Int(f^{-1}(Int(Cl(V))))$.

Sufficiency. Let V be any regular open set of Y. Then V is preopen set of Y. By hypothesis, we have $f^{-1}(V) \subseteq \beta - \gamma Int(f^{-1}(Int(Cl(V)))) = \beta - \gamma Int(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is $\beta - \gamma$ -open set in X and hence by Theorem 3.6, f is almost $\beta - \gamma$ -continuous.

Corollary 3.12. A function $f : X \to Y$ is almost β - γ -continuous if and only if $f^{-1}(V) \subseteq \beta$ - $\gamma Int(f^{-1}(sCl(V)))$ for each preopen set V of Y.

Corollary 3.13. A function $f: X \to Y$ is almost β - γ -continuous if and only if β - $\gamma Cl(f^{-1}(Cl(Int(F)))) \subseteq f^{-1}(F)$ for each preclosed set F of Y.

Corollary 3.14. A function $f : X \to Y$ is almost β - γ -continuous if and only if β - $\gamma Cl(f^{-1}(sInt(F)))) \subseteq f^{-1}(F)$ for each preclosed set F of Y.

Theorem 3.15. For a function $f: X \to Y$, the following statements are equivalent:

- 1. f is almost β - γ -continuous.
- 2. For each neighborhood V of f(x), $x \in \beta$ - $\gamma Int(f^{-1}(sCl(V)))$.
- 3. For each neighborhood V of f(x), $x \in \beta -\gamma Int(f^{-1}(Int(Cl(V))))$.

Proof. Follows from Theorem 3.11 and Corollary 3.12.

Theorem 3.16. Let $f: X \to Y$ is an almost β - γ -continuous function and let V be any open subset of Y. If $x \in \beta$ - $\gamma Cl(f^{-1}(V)) \setminus f^{-1}(V)$, then $f(x) \in \beta$ - $\gamma Cl(V)$.

Proof. Let $x \in X$ such that $x \in \beta - \gamma Cl(f^{-1}(V)) \setminus f^{-1}(V)$ and suppose $f(x) \notin \beta - \gamma Cl(V)$. Then there exists a $\beta - \gamma$ -open set H containing f(x) such that $H \cap V = \phi$. Then $Cl(H) \cap V = \phi$ which implies $Int(Cl(H)) \cap V = \phi$ and Int(Cl(H)) is regular open set. Since f is almost $\beta - \gamma$ -continuous, by Theorem 3.5, there exists a $\beta - \gamma$ -open set U in X containing x such that $f(U) \subseteq Int(Cl(H))$. Therefore, $f(U) \cap V = \phi$. However, since $x \in \beta - \gamma Cl(f^{-1}(V)), U \cap f^{-1}(V) \neq \phi$ for every $\beta - \gamma$ -open set U in X containing x, so that $f(U) \cap V \neq \phi$. We have a contradiction. It follows that $f(x) \in \beta - \gamma Cl(V)$.

Theorem 3.17. If $f: X \to Y$ is almost β - γ -continuous and $g: Y \to Z$ is continuous and open. Then the composition function $gof: X \to Z$ is almost β - γ -continuous.

Proof. Let $x \in X$ and W be an open set of Z containing g(f(x)). Since g is continuous, $g^{-1}(W)$ is an open set of Y containing f(x). Since f is almost β - γ -continuous, there exists a β - γ -open set Uof X containing x such that $f(U) \subseteq Int(Cl(g^{-1}(W)))$. Also, since g is continuous, then we obtain $(gof)(U) \subseteq g(Int(g^{-1}(Cl(W))))$. Since g is open, we obtain $(gof)(U) \subseteq Int(Cl(W))$. Therefore, gof is almost β - γ -continuous.

Theorem 3.18. If $f: X \to Y$ is an almost β - γ -continuous function and Y is semi-regular, then f is β - γ -continuous.

Proof. Let $x \in X$ and Let V be any open set of Y containing f(x). By the semi-regularity of Y, there exists a regular open set G of Y such that $f(x) \in G \subseteq V$. Since f is almost β - γ -continuous. By Theorem 3.5, there exists a β - γ -open set U of X containing x such that $f(U) \subseteq G \subseteq V$. Therefore, f is β - γ -continuous.

References

- Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A., β-open sets and β-continuous mappings, Bull. Fac. Sci. Assuit. Univ., 12 (1) (1983), 77-90.
- 2. Andrijevic, D., Semi-preopen sets, Math. Vesnik, 38 (1986), 24-36.
- 3. Abdulla A. S., On some applications of special subsets in topology, Ph.D. Thesis, Tanta Univ., (1986).
- 4. Crossley S. G. and Hildebrand S. K., Semi-closure, Texas J. Sci., 22 (1971), 99-112.
- Dontchev J., Ganster M. and Noiri T., On p-closed spaces, Internat. J. Math. and Math. Sci., 24 (3) (2000), 203-212.
- El-Deeb S. N., Hasanein I. A., Mashhour A. S. and Noiri, T., On p-regular spaces, Bull. Math. Soc. Sci. Math. R.S. Roum., 27 (4) (1983), 311-315.
- 7. Hariwan Z. Ibrahim, β-γ-Irresolute and β-γ-Closed Graph, Gen. Math. Notes, 15 (2), April, (2013), 32-44.
- Hariwan Z. Ibrahim, Weak forms of γ-open sets and new separation axioms, Int. J. of Scientific and Engineering Research, 3 (4), April, (2012).
- Jankovic D. S., A note on mappings of extremally disconnected spaces, Acta Math. Hungar., 46 (1-2) (1985), 83-92.
- 10. Kasahara, S., Operation compact spaces, Math. Japonica, 24 (1) (1979), 97-105.
- 11. Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1) (1963), 36-41.
- Mashhour, A. S., Abd El-Monsef, M. E. and El-Deeb, S. N., On precontinuous and week precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- 13. Nasef, A. A. and Noiri, T., Some weak forms of almost continuity, Acta Math. Hung., 74 (3) (1997) 211-219.
- 14. NjÙĞstad O., On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- 15. Noiri T. and Popa V., On Almost β -continuous functions, Acta Math. Hungar., 79 (4) (1998), 329-339.
- 16. Ogata, H., Operation on topological spaces and associated topology, Math. Japonica, 36 (1) (1991), 175-184.
- Reilly I. L. and Vamanmurthy M. K., On α-continuity in topological spaces, Acta Math. Hungar., 45 (1-2) (1985), 27-32.
- Sai Sundara Krishnan, G., A new class of semi open sets in a topological space, Proc. NCMCM, Allied Publishers, New Delhi, (2003), 305-311.
- 19. Velicko N. V., H-closed topological spaces, Amer. Math. Soc. Transl., 78 (2) (1968), 103-118.
- Yunis R. H., Some equivalent concepts defined by using α-open sets in topological spaces, Zanco J. of Pure and Applied Sciences, 17 (1) (2005), 21-26.

JAAM