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Abstract We present some elementary proof methods for Wallis product formula by the use of
integration equation, Wallis sine formula and gamma function.
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1 Introduction

John Wallis (1655) gave a representation of π by the use of infinite product [1][2], that is the famous
Wallis product formula

π

2 = 2 · 2
1 · 3

4 · 4
3 · 5

6 · 6
5 · 7

8 · 8
7 · 9 · · · =

∞∏
n=1

2n · 2n
(2n− 1)(2n+ 1) . (1)

Equation (1) is equivalent to the following limit expression

π

2 = lim
n→∞

[
(2n)!!

(2n− 1)!!

]2
· 1

2n+ 1 . (2)

The Wallis product formula is closely related to the Riemann Zeta function and the Stirling formula
[3][4]. The applications and proof methods of Wallis-type equations and inequalities have attracted much
attention of mathematicians [5][6][7]. It is well-known that the following Wallis sine and cosine formula
can be proved immediately with the help of integration by parts.∫ π

2

0
sinn xdx =

∫ π
2

0
cosnxdx =

{
(n−1)!!
n!! , n is an odd

(n−1)!!
n!!

π
2 , n is an even

. (3)

In this paper, three elementary proof methods for Wallis product formula (1) are given based on an
integral equation (4), Wallis sine and cosine formula (3) and an asymptotic equation of gamma function
(5).

2 Main Results

2.1 Proof of the Wallis Product Formula with an Integral Equation

Proof. It is fairly straightforward that∫ +∞

0

dx
x2 + s

= π

2
√
s
, (s > 0)

take the derivative of both sides n times with respect to s to get that∫ +∞

0

dx
(x2 + s)n+1 = 1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · 2n · π2 ·
1

sn+ 1
2
, s > 0. (4)

Set x = y√
n
, s = 1, Eq. (4) therefore becomes∫ +∞

0

1
(1 + y2

n )n+1
dy = (2n− 1)!!

(2n)!! · π2 ·
√
n,
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take the limit with respect to n on both sides

lim
n→∞

(2n− 1)!!
(2n)!! · π2 ·

√
n = lim

n→∞

∫ +∞

0

1
(1 + y2

n )n+1
dy

=
∫ +∞

0
e−y

2
dy

=
√
π

2 ,

rearrange it

lim
n→∞

(2n)!!
(2n− 1)!!

1√
n

=
√
π.

Therefore

lim
n→∞

[
(2n)!!

(2n− 1)!! ·
√
n

]2
· 1

2 = lim
n→∞

[(2n)!]2

(2n− 1)!(2n+ 1)! ·
2n+ 1

2n

=
∞∏
n=1

2n · 2n
(2n− 1)(2n+ 1) = π

2 .

2.2 Proof of the Wallis Product Formula with Wallis Sine Formula

Proof. Let In =
∫ π

2
0 sinn xdx =

∫ π
2

0 cosn xdx, n = 0, 1, . . ., particularly, I0 = π/2, I1 = 1. On the one hand,
the recurrence relation In = n−1

n In−2 can be derived by using integration by parts on In, for n ≥ 2.
Consequently

I2n+1 = 2n
2n+ 1I2n−1 = 2n

2n+ 1
2n− 2
2n− 1 · · ·

2
3I1 =

n∏
k=1

2k
2k + 1 ,

I2n = 2n− 1
2n I2n−2 = 2n− 1

2n
2n− 3
2n− 2 · · ·

1
2I0 = π

2

n∏
k=1

2k − 1
2k .

On the other hand, in virtue of sinn+1 x ≤ sinn x, 0 ≤ x ≤ π/2, we then have 0 <
∫ π

2
0 sin2n+1 xdx <∫ π

2
0 sin2n xdx <

∫ π
2

0 sin2n−1 xdx, that is to say 0 < I2n+1 < I2n < I2n−1 , accordingly

1 ≤ I2n

I2n+1
≤ I2n−1

I2n+1
= 2n+ 1

2n ,

by the use of the squeeze rule

lim
n→∞

I2n

I2n+1
= lim
n→∞

π

2

n∏
k=1

(
2k − 1

2k · 2k + 1
2k

)
= 1,

it follows that
π

2 =
∞∏
k=1

2k · 2k
(2k − 1)(2k + 1) .
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2.3 Proof of the Wallis Product Formula with Gamma Function
Proof. The Euler gamma function [8] is defined for α > 0 by

Γ (α) =
∫ +∞

0
xα−1e−xdx,

and the relations below are well-known for n = 1, 2, . . . , s ≥ 0,

Γ (n) = (n− 1)!, Γ

(
n+ 1

2

)
= (2n− 1)!

2n
√
n, lim

n→∞

Γ (n+ s)
nsΓ (n) = 1. (5)

Specifically, let s = 1/2, then

lim
n→∞

[
Γ (n+ 1

2 )
√
nΓ (n)

]2

= lim
n→∞

[
(2n− 1)!!

√
π

2n(n− 1)!
√
n

]2

= lim
n→∞

[
(2n− 1)!!

(2n)!!

]2
· (2n+ 1) · n

2n+ 1π = 1.

Therefore, Wallis product formula (2) can be obtained immediately from the above limit expression.

2.4 The Applications of Wallis Product Formula
Here are two classical examples, we will solve them by using Wallis product formula typically.

Example 2.1. Determine the Poisson integration I =
∫ +∞

0
e−x

2
dx.

For any subinterval [a, b] on [0,+∞), when n→∞, the sequence of continuous function
{(

1 + x2

n

)−n}
converge to e−x2 uniformly on [a, b], hence

I =
∫ +∞

0
e−x

2
dx =

∫ +∞

0
lim

n→+∞

(
1 + x2

n

)−n
dx

= lim
n→+∞

∫ +∞

0

(
1 + x2

n

)−n
dx.

Let x =
√
n cot t, and by the Wallis sine formula (3), we have

I = lim
n→+∞

∫ π
2

0

√
n sin2n−2 tdt = lim

n→+∞

√
n · (2n− 3)!!

(2n− 2)!! ·
π

2

= lim
n→+∞

√
n√

2n− 1
· 1{

1
2n−1

[
(2n−2)!!
(2n−3)!!

]2
} 1

2
· π2

=
√
π

2 .

Example 2.2. Discuss the convergence of series
∞∑
n=1

(−1)n−1
[

(2n− 1)!!
(2n)!!

]p
, p > 0.

Let an = (2n−1)!!
(2n)!! , bn = apn, in view of the Wallis product formula (2), it becomes that

an ∼
2√
π
· 1√

2n+ 1
, (n→∞)

so
∑∞
n=1 bn and

∑∞
n=1

1
n
p
2
have the same convergerce property. According to the p convergence criterion

and Leibniz discriminance, the original series is conditionally convergent for 0 < p ≤ 2 and absolutely
convergent for p > 2.
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