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Abstract We consider the elliptic equation

∆u = f (u)

in a region Ω ⊂ RN , N ≥ 3, where f is a positive continuous function satisfying

lim
u→0+

f (u) =∞.

Motivated by the thin film equations, a solution u is said to be a point rupture solution if for some
p ∈ Ω, u (p) = 0 and u (p) > 0 in Ω\ {p}. Solving the associated ordinary differential equations
confirm our main results of sufficient conditions on f for the existence uniquness of radial point
rupture solution and its asymptotic behavior. Furthermore, we can prove that our results can be
applied to the point rupture solutions for a class of quasi-linear elliptic equations of the form

div (a (u)∆u) = a′ (u)
2 |∇u|2 + f (u)
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1 Introduction

Let Ω be a region in RN , N ≥ 3 and f be a positive continuous function defined on (0,∞) such that it
can be written as a product of two positive, continuous functions f1 and f2 such that f1 is uniformly
bounded and f2 is decreasing near zero having single zero at some positive t0 and we require f to satisfy
the usual growth condition,

lim
v→0+

f (v) =∞ (1.1)

We are interested in the elliptic equation

∆u = f (u) in Ω (1.2)

This equation was studied by many authors and its rupture solution was derived in [13] when dealing
with the zero set of sobolev functions having negative power of integrability. The same equation was also
investigated for its rupture solution in [15] for the case f (u) = u−α − 1, for α > 1, and in this case there
are many applications to the Van der Waals force driven thin films. The equation was also used in [14],
when f satisfies a special integrability condition, and in [11] when the space dimension is 3 and above.The
quasi-linear equation (1.4) which can be transformed to (1.2) was analyzed for rupture solutions in [6]
where they proved existence of solutions called explosive solutions.

In this we consider Ω to be a bounded smooth region in RN where N ≥ 3 and we assume that f is
a positive, continuous function that can be written as a product of two positive, continuous functions
f1 and f2 such that f1 is uniformly bounded and f2 is decreasing near zero having single zero at some
positive t0 and we require f to satisfy the usual growth condition. Clearly, f2 inherits all the properties
of f near zero, more precisely, it will be decreasing, positive, continuous and the same limit as f near
zero. Of course our main interest comes from the general N dimensional elliptic equation

ut = −∇ · (um∇u)−∇ · (un∇∆u) . (1.3)
The second term on the right which is the fourth-order term of the equation reflects surface tension

effects, and the second-order term may reflect van der Waals interactions, gravity, the geometry of the
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solid substrate or thermocapillary effects. This class of model equation is related to many physical systems
involving fluid interfaces.
When n = 1,m = 1, it describes a thin jet in a Hele-Shaw cell [1], [5], [8], [9]; when n = m = 3 it
describes fluid droplets hanging from a ceiling [10]; when n = 0 and m = 1, it describes solidification of a
hyper-cooled melt [3], [4]; and when n = 3,m = −1, it models van der Waals force driven thin film [7],
[12], [18], [19], [20], when the space dimension is one R. Laugesen and M. Pugh [16] studied rigorously, in
a general setting, positive periodic steady states and touchdown steady states solution. F. Bernis and A.
Friedman in [2] established the existence of weak solutions and showed that the support of the thin film
will expand with time. Equation (1.3) models the dynamic of thin films equation, using the pressure as
defined earlier with Neumann boundary condition ∂u

∂n = 0 on ∂Ω. The assumptions of the wetting and
non-wetting of surfaces and steady states solutions lead to the semi-linear elliptic equation (1.2) . The
main result guarantees the existence of a weak radial point rupture solution then this result obtained for
the equation (1.2) is exploited to prove the existence of weak point rupture solutions for the quasi-linear
elliptic equations of the form

div (a (u)∇u) = a′ (u)
2 |∇u|2 + f (u) . (1.4)

where for some σ∗ > 0 a ∈ C1 [0, σ∗] and f ∈ C (0, σ∗] are positive functions of a real variable. Therefore,
We are dealing with a semi-linear elliptic equation in RN , and as in the preceding, in RN for now , let Ω
be a smooth region in RN with N ≥ 3 and f be a positive continuous function defined on (0,∞) satisfying
the growth condition (1.1). Moreover we assume the function f to be the product of two functions as
mentioned above. Here also, a solution to (1.2) is said to be an N dimensional point rupture solution if for
some p ∈ Ω ⊂ RN , u (p) = 0 and u (x) > 0 for any x ∈ Ω\ {p}. The main purpose is to find a sufficient
condition on the growth of f near the origin so that (1.2) has a radial point rupture solution in RN . The
main difficulty of the problem is the same as in the plane, two types of singularities involved. In radial
coordinates, ∆u = urr + 1

rur , becomes singular when r = 0. Such singularity is artificial if u behaves
nicely and 1

rur becomes continuous at r = 0. However, for rupture solutions, ur itself could blow up at
r = 0. Singularity also arises when we assume (1.1) and the solution touches zero.

2 The Main Result

The following is the statement of the main theorem where we assert the existence of an N dimensional
point rupture and weak solution to the semi-linear elliptic equation with its appropriate bounds.

Theorem 1. Let t1 > 0 be such that f is a continuous, positive function and can be written as f = f1f2
in (0, t1]. Assume that f2 is continuous,positive and monotone decreasing, also f1 is uniformly bounded,
that is, there exist positive constants A and B such that, A ≤ f1 ≤ B. The function f is supposed to
satisfy the usual blow up condition near zero, that is, limv→0+ f (v) =∞. , then define:

G (v) =
∫ v

0

1
f2 (s)ds. (2.1)

Then there exists r∗ > 0 and a radial point rupture solution u0 to (1.2) in Br∗ (0) such that u0 = u0 (r)
is continuous on [0, r∗],

u0 (0) = 0, u0 (r) > 0 for any r ∈ (0, r∗] ,

and u0 is a weak solution to (1.2) in Br∗ (0). Moreover, u0 is monotone increasing and satisfies the
following bounds

G−1
(
Ar2

2N

)
≤ u0(r) ≤ BN

A(N − 2)G
−1
(
Ar2

2N

)
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3 Proof of the Main Result

Proof. In this part we assume that f = f1f2 with f1 uniformly bounded and f2 is decreasing near zero.
so we can fix t1 > 0 so that f2 is decreasing in (0, t1] , this is possible since f2 is assumed to be
decreasing near zero, now for any α ∈ (0, t1] define r1(α) = inf{r > 0, uα(r) = t1} and note that such
r1 exists because of the oscillation of uα. Since f > 0 in (0, t1] and uα(0) = α, we have that uα is
increasing in (0, r1] from α to t1 since we have

rN−1u′α(r) =
∫ r

0
f1 (uα(s)) f2 (uα(s)) sN−1ds.

Therefore, since f2 is decreasing in (0, r1], using the uniform bound of the function f1, that is,
A ≤ f1 ≤ B we get,

rN−1u′α(r) ≥ A
∫ r

0
f2(uα(s))sN−1ds ≥ Af2(uα(r))

∫ r

0
sN−1ds.

Hence, since we defined G(t) =
∫ t

0
1

f2(s)ds for t < t0 by noting that G is increasing in [0, t0]
we conclude that ∫ r

0

u′α(s)
f2(uα(s))ds ≥

∫ r

0

As

N
ds, thus G(uα(r)) ≥ Ar2

2N +G(α) ≥ Ar2

2N

uα(r) ≥ G−1
(
Ar2

2N

)
for any α ∈ (0, t1), and for all r ∈ [0, r1].

Now we will prove that there exists a constant r∗ > 0 such that r1(α) ≥ r∗ for all small α,

Corollary 1. There exists an r∗ > 0 such that for any α ∈
(
0, t12

]
r1(α) ≥ r∗.

We may define,

r∗ =

√
2N
A
G

(
At1
6B

)
Proof.

u′α(r) ≤ Br1−N
∫ r

0
f2(uα(s))sN−1ds ≤ Br1−N

∫ r

0
f2(G−1(As

2

2N ))sN−1ds for r ≤ r1

Thus integrating from 0 to r1 we get,

t1 − α ≤
∫ r1

0
Br1−N

∫ r

0
f2

(
G−1

(
As2

2N

))
sN−1dsdr

interchanging integration we get

t1 − α ≤ B
∫ r1

0
f2

(
G−1

(
As2

2N

))
sN−1

∫ r1

s

r1−Ndrds

hence

t1 − α ≤
B

N − 2

∫ r1

0
f2

(
G−1

(
As2

2N

))
sds
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Using the change of variable z = As2

2N we get

t1 − α ≤
BN

A(N − 2)

∫ Ar2
1

2N

0
f2(G−1(z))dz = BN

A(N − 2)G
−1
(
Ar2

1
2N

)
So for 0 < α < t1

2 we get,

Ar2
1

2N ≥ G
(
A(N − 2)t1

B2N

)
≥ G

(
At1
6B

)
Therefore r1(α) is uniformly bounded from below for any α > 0 small enough.

Take r∗ to be r∗ =
√

2N
A G

(
At1
6B
)
.

Now, observe that for any α < δ < r ≤ r∗ we have

G−1(Ar
2

2N ) ≤ uα(r) ≤ t1 ≤
BN

A(N − 2)G
−1
(
Ar2

1
2N

)
+ α. (3.1)

Using standard elliptic theory and diagonal process we can construct a subsequence uα that converges
locally and uniformly to the rupture solution u0 that satisfies ∆u0 = f(u0).

Proposition 1. There exists a sequence {αk}∞k=1 ⊂
(
0, t12

]
satisfying

lim
k→∞

αk = 0,

such that uαk
→ u0 uniformly in Br∗ (0) as k →∞, for some function

u0 ∈ C0
(
Br∗ (0)

)
∩ C2

(
Br∗ (0)\ {0}

)
.

Moreover, u0 is a classical solution to (1.2) in Br∗ (0) \ {0} and

G−1(Ar
2

2N ) ≤ u0(r) ≤ BN

A(N − 2)G
−1
(
Ar2

2N

)
Proof. For any ε > 0, uα, α ∈

(
0, t12

]
is a family of uniformly bounded classical solutions to

∆u = f (u) in Br∗ (0)\Bε (0) ,

hence by a diagonal argument, there exists a sequence {αk}∞k=1 ⊂
(
0, t12

]
satisfying limk→∞ αk = 0, such

that uαk
→ u0 locally uniformly in Br∗ (0)\ {0} as k →∞. Now (3.1) implies

G−1(Ar
2

2N ) ≤ u0(r) ≤ BN

A(N − 2)G
−1
(
Ar2

2N

)
Since

lim
r→0

BN

A(N − 2)G
−1
(
Ar2

2N

)
= 0,

it is not difficult to see, from the bounds of uα and u0, that uαk
→ u0 uniformly in Br∗ (0) as

k →∞.

Remark 1. The above limit should be independent of the choice of the sequence {αk}∞k=1. Actually, we
expect that uα → u0 uniformly on [0, r∗] as α→ 0. This is an open question.
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In order to show that u0 is a weak solution. The following lemma will be very useful.

Lemma 1. Let v0 be the rupture radial solution in Rn of,

∆v = h(v) then lim
r→0+

rn−1v′0(r) = 0.

Proof. We have the followings,

∆v0 = h(v0), since radial in Rn, v′′0 + n− 1
r

v′0 = h(v0)

rn−1v′′0 + (n− 1)rn−2v′0(r) = rn−1h(v0) or (rn−1v′0)′ = rn−1h(v0) > 0

Hence, we see that rn−1v′0(r) is monotone increasing in (0, r∗). Since rn−1v′0 ≥ 0 in (0, r∗)

β = lim
r→0+

rn−1v′0(r) ≥ 0.

is well defined. Assuming that β > 0, there exists δ > 0 such that for r ∈ (0, δ] we have,

rn−1v′0(r) ≥ β

2 thus we get v0(r) ≤ v0(δ)− βδ2−n

2− n + β

2(2− n)rn−2 , which is a contradiction.

Now, in Rn the rupture solution for, ∆v = h(v) is a weak solution in Ω = Br∗ (0).

Proposition 2. h(v0) ∈ L1 (Ω) and v0 is a weak solution to, ∆v = h(v).

Proof. For any test function ϕ ∈ C∞c (Ω), we have∫
Ω

v0∆ϕdx = lim
ε→0+

∫
Ω\Bε(0)

v0∆ϕdx

= lim
ε→0+

(∫
Ω\Bε(0)

∆v0ϕdx−
∫
∂Bε(0)

(
v0
∂ϕ

∂n
− ϕ∂v0

∂n

)
dsx

)

= lim
ε→0+

(∫
Ω\Bε(0)

h (v0)ϕdx−
∫
∂Bε(0)

v0
∂ϕ

∂n
dsx +

∫
∂Bε(0)

ϕ
∂v0

∂n
dsx

)
.

Now for any ε ∈ (0, r∗), since v0 (ε) ≤ v0 (r∗) ≤ t1, we have

∣∣∣∣∣
∫
∂Bε(0)

v0
∂ϕ

∂n
dsx

∣∣∣∣∣ ≤ v0 (ε) ‖∇ϕ‖L∞(Ω) |∂Bε (0)|

≤ nα(n)εn−1v0 (ε) ‖∇ϕ‖L∞(Br∗ (0)) → 0

as ε → 0+. Here nα(n) denotes the surface area of the unit sphere. On the other hand, the previous
lemma implies that ∣∣∣∣∣

∫
∂Bε(0)

ϕ
∂v0

∂n
dsx

∣∣∣∣∣ ≤ nα(n)εn−1v′0 (ε) ‖ϕ‖L∞(Br∗ (0)) → 0
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as ε→ 0+. Hence, we have for any ϕ ∈ C∞c (Ω),∫
Br∗ (0)

v0∆ϕdx = lim
ε→0+

∫
Br∗ (0)\Bε(0)

h (v0)ϕdx.

Choosing ϕ such that ϕ ≡ 1 near the origin, the above limit implies that h (v0) is integrable near the
origin. Since h (v0) is a positive continuous function in Br∗ (0) \ {0}, we conclude h (v0) ∈ L1 (Br∗ (0)).
So we have for any test function ϕ ∈ C∞c (Br∗ (0))∫

Br∗ (0)
v0∆ϕdx = lim

ε→0+

∫
Br∗ (0)\Bε(0)

h (v0)ϕdx =
∫
Br∗ (0)

h (v0)ϕdx,

i.e., v0 is a weak solution in Br∗ (0) ⊆ Rn.

4 Application to Quasi-Linear Equations

Our previous result can easily be applied in Rn to the point rupture solutions of the quasi-linear elliptic
equations of the form

div (a (u)∆u) = a′ (u)
2 |∇u|2 + f (u) (4.1)

Now let us state the theorem for an n dimensional quasi-linear elliptic equation.

Theorem 2. Assume that for some σ∗ > 0, a ∈ C1 [0, σ∗] f ∈ C (0, σ∗] are positive functions. Let f1, f2
be continuous, f2 is monotone decreasing f1 is uniformly bounded, such that

lim
v→0+

f2 (v) =∞, and f = f1f2

Let
G (v) =

∫ v

0

1
f2 (s)ds. (4.2)

Then there exists r∗ > 0 and a radial point rupture solution u0 to (1.4) in Br∗ (0) such that u0 = u0 (r)
is continuous on [0, r∗],

u0 (0) = 0, u0 (r) > 0 for any r ∈ (0, r∗] .

Moreover there exists a function g, and constants K1,K2 such that u0 is a weak solution
with the following estimates

g

(
G−1

(
Ar2

2N

))
≤ u0(r) ≤ g

(
K2N

K1(N − 2)G
−1
(
K1r

2

2N

))

Proof. We consider the quasi-linear equation (1.4) in a region Ω ⊂ Rn where for some δ∗ > 0, a ∈ C1 [0, δ∗]
and f ∈ C (0, δ∗] are positive functions of a real variable. A solution to (1.4) is said to be a point rupture
solution if for some p ∈ Ω, u (p) = 0 and u (x) > 0 for any x ∈ Ω\ {p}.
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Let g be a solution to the Cauchy problem

g′ = 1√
a (g)

, g (0) = 0,

and let v be a solution to the elliptic problem

4v = h (v) (4.3)

where
h (v) = f (g (v))√

a (g (v))
.

Define the auxiliary function u as u = g ◦ v from RN to R which is well defined since v is a solution of
(4.3) and h is continuous, then

u = g (v) thus h(v) = f(g(v))√
a(g(v))

= f(u)√
a(u)

.

Therefore it is clear that,

∇u = g′(v)∇v

hence,

∇u = 1√
a(g(v))

∇v,

thus

∇u = 1√
a(u)
∇v

Therefore we have
∇v =

√
a (u)∇u,

On the other hand

∇
√
a(u) = 1

2(a(u))
−1
2 a′(u)∇u = a′(u)

2
√
a(u)
∇u,

Now combining all of the above leads to

∆v =
√
a (u)∆u+ 1

2
1√
a (u)

a′ (u) |∇u|2 .

Hence (4.3) implies √
a (u)∆u+ 1

2
1√
a (u)

a′ (u) |∇u|2 = f (u)√
a (u)

that is,

a (u)∆u+ 1
2a
′ (u) |∇u|2 = f (u) ,

and now by adding to both sides the quantity,

1
2a
′ (u) |∇u|2

then we end up with,

a (u)∆u+ a′ (u) |∇u|2 = 1
2a
′ (u) |∇u|2 + f (u) ,
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which is equivalent to (1.4). Hence, (1.4) possesses a point rupture solution if and only if (4.3) has a
point rupture solution.

Now h can be written as a product of two function satisfying conditions of the previous theorem

h(v) = f(g(v))√
a(g(v))

= f1(g(v))√
a(g(v))

f2(g(v)) = h1(v)h2(v)

where, h1 = f1(g(v))√
a(g(v))

is uniformly bounded, say K1 ≤ K2 since both f1 and g are uniformly
bounded. The function h2 defined by h2(v) = f2(g(v)) is decreasing since g′ > 0 . Therefore the
technical assumptions on f1 and f2 imply that the function h satisfies the conditions of theorem
5.1. Hence, there exists a weak radial rupture solution v0 which is equivalent to say that u0 = g(v0)
is a radial rupture solution for the quasi-linear equation with the bounds,

g

(
G−1

(
Ar2

2N

))
≤ u0(r) ≤ g

(
K2N

K1(N − 2)G
−1
(
K1r

2

2N

))

Now we will prove that in Rn the rupture solution for the quasi-linear equation is a weak solution in
Ω = Br∗ (0).

Proposition 3. f(u0) ∈ L1 (Ω) and u0 is a weak solution for the quasi-linear equation in Ω = Br∗ (0)

Proof. Assume that u0 is a rupture solution for the quasi-linear equation, that is u0 satisfies,

div (a (u)∇u) = a′ (u)
2 |∇u|2 + f (u)

where a ∈ C1, f ∈ C0 are positive functions and u0(0) = 0.

We need to show that for any test function ϕ ∈ C∞c (Ω), we have∫
Ω

div (a (u0)∇u0)ϕdx =
∫
Ω

(
a′ (u0)

2 |∇u0|2 + f (u0)
)
ϕdx

∫
Ω

(
a (u0)∆u0 + 1

2a
′ (u0) |∇u0|2 − f (u0)

)
ϕdx = 0 that is,

∫
Ω

√
a (u0)

[√
a (u0)∆u0 + 1

2
√
a (u0)

a′ (u0) |∇u0|2 −
f (u0)√
a (u0)

]
ϕdx = 0 thus,

∫
Ω

[√
a (u0)∆u0 + 1

2
√
a (u0)

a′ (u0) |∇u0|2 −
f (u0)√
a (u0)

]√
a (u0)ϕdx = 0 hence,

∫
Ω

[∆v0 − h (v0)]
√
a (g(v0))ϕdx = 0 therefore we need to show

∫
Ω

∆v0
√
a (g(v0))ϕdx =

∫
Ω

h (v0)
√
a (g(v0))ϕdx

Define ψ =
√
a (g(v0)) ϕ and then let us start computing,
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∫
Ω

v0∆ψdx = lim
ε→0+

∫
Ω\Bε(0)

v0∆ψdx = lim
ε→0+

[∫
Ω\Bε(0)

ψ∆v0dx−
∫
∂Bε(0)

(
v0
∂ψ

∂n
− ψ∂v0

∂n

)
dsx

]

= lim
ε→0+

[∫
Ω\Bε(0)

h(v0)ψdx−
∫
∂Bε(0)

(
v0
∂ψ

∂n
− ψ∂v0

∂n

)
dsx

]

Now let’s justify that the boundary terms are zeros, indeed for any ε ∈ (0, r∗) since v0 (ε) ≤ v0 (r∗),
we have

∣∣∣∣∣
∫
∂Bε(0)

ψ
∂v0

∂n
dsx

∣∣∣∣∣ ≤Mnα(n)εn−1v′0 (ε) ‖ϕ‖L∞(Br∗ (0)) → 0 as ε→ 0

Here M is a constant and we use the lemma. On the other hand the second boundary term can be
controlled as follows,

∣∣∣∣∣
∫
∂Bε(0)

v0
∂ψ

∂n
dsx

∣∣∣∣∣ ≤ [(M ‖∇ϕ‖L∞(Br∗ (0))

)
+
(
N ‖ϕ‖L∞(Br∗ (0))

)
v′0(ε)

]
nα(n)εn−1

Where N = maxBr∗ (0)
a′(g(v0))g′(v0)

2
√
a(g(v0))

Therefore we have that,

∣∣∣∣∣
∫
∂Bε(0)

v0
∂ψ

∂n
dsx

∣∣∣∣∣ → 0+ as ε→ 0+

Hence, f(u0) ∈ L1 (Ω) and u0 is a weak solution for the quasi-linear equation in Ω = Br∗ (0).
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