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Abstract In this paper, by the use of a new fixed point theorem and the Boundary Value Problem’s
Green function. the existence of at least one positive solutions for the fourth-order two point boundary
value problem with all order derivatives{

u(4)(t) + u
′′

(t) = λf(t, u(t), u
′
(t), u

′′
(t), u

′′′
(t)), t ∈ [0, 1],

u(0) = u(1) = u
′′

(0) = u
′′

(1) = 0.

is considered, where f is a nonnegative continuous function and λ > 0, 0 < A < π2.

Keywords: Fourth-order boundary value problem, fixed point theorem in a cone, positive solution.

1 Introduction

The deformation of an elastic beam in equilibrium state, whose two ends are simply supported, can
be described by a fourth-order ordinary equation boundary value problem. Owing to its significance
in physics, the existence of positive solutions for the fourth-order boundary value problem has been
studied by many authors using nonlinear alternatives of Leray-Schauder, the fixed point index theory, the
Krasnosel’skii’s fixed point theorem and the method of upper and lower solutions, in reference [1-9][11].
In recent years, there has been much attention on the fourth-order differential equations with one or two
parameters.

By the fixed point theorem and theory in cone [4], Bai investigated the following fourth-order two
point boundary value problem {

u(4)(t)− λf(u(t)) = 0, t ∈ [0, 1],
u(0) = u(1) = u

′′(0) = u
′′(1) = 0.

where λ is a normal number,f : [0, 1]× [0,∞) −→ [0,∞)
By the monotone operator theorem and the critical point theory, Li [7] proved the existence and

multiplicities of positive solutions for the fourth-order two point boundary value problem{
u(4)(t)− f(u(t)) = 0, t ∈ [0, 1],
u(0) = u(1) = u

′′(0) = u
′′(1) = 0.

where f : [0, 1]×R1 −→ R1 is continuous.
All the above works were done under the assumption that the first order derivative u′

u
′′
u

′′ is not
involved explicitly in the nonlinear term f . We are concerned with the existence of positive solutions for
the fourth-order two-point boundary value problem{

u(4)(t) + u
′′(t) = λf(t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = u(1) = u
′′(0) = u

′′(1) = 0.
(1.1)

Throughout, we assume

(H1) λ > 0, 0 < A < π2;
(H2) f : [0, 1]× [0,∞)×R −→ [0,∞)is continuous.
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2 Preliminary

Let Y = C[0, 1] be the Banach space equipped with the norm ‖u‖0 = max
t∈[0,1]

|u(t)|.

Set λ1, λ2 be the roots of the polynomial P (λ) = λ2 + Aλ, namely λ1 = 0, λ2 = −A. By (H1), it is
easy to see that −π2 < λ2 < 0.

Let Gi(t, s)(i = 1, 2) be the Green’s function of the linear boundary value problem:−u′′ + λiu(t) =
0, u(0) = u(1) = 0.Then, carefully calculation yield:

G1(t, s) =
{
s(1− t), 0 ≤ s ≤ t ≤ 1,
t(1− s), 0 ≤ t ≤ s ≤ 1,

G2(t, s) =


sin
√
As sin

√
A(1− t)√

A sin
√
A

, 0 ≤ s ≤ t ≤ 1,

sin
√
At sin

√
A(1− s)√

A sin
√
A

, 0 ≤ t ≤ s ≤ 1.

Lemma 2.1. ([8]) Suppose (H1)(H2) hold. Then for any g(t) ∈ C[0, 1], BVP{
u(4)(t) +Au

′′(t) = g(t), t ∈ [0, 1]
u(0) = u(1) = u

′′(0) = u
′′(1) = 0

(2.1)

has a unique solution

u(t) =
∫ 1

0

∫ 1

0
G1(t, s)G2(s, τ)g(τ)dτds, (2.2)

where
G1(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1,
t(1− s), 0 ≤ t ≤ s ≤ 1,

G2(s, τ) =


sin
√
Aτ sin

√
A(1− s)√

A sin
√
A

, 0 ≤ τ ≤ s ≤ 1,

sin
√
As sin

√
A(1− τ)√

A sin
√
A

, 0 ≤ s ≤ τ ≤ 1.

By u(t),we get

u
′
(t) =

∫ 1

t

∫ 1

0
G2(s, τ)g(τ)dτds−

∫ 1

0

∫ 1

0
sG2(s, τ)g(τ)dτds, (2.3)

u
′′
(t) = −

∫ 1

0
G2(t, τ)g(τ)dτ, (2.4)

u
′′′

(t) = −
∫ 1

0

∂G2(t, τ)
∂t

g(τ)dτ. (2.5)

Lemma 2.2. ([8]) Assume(H1) (H2) hold. Then one has:
(i) Gi(t, s) ≥ 0,∀t, s ∈ [0, 1];
(ii) Gi(t, s) ≤ CiGi(s, s), ∀t, s ∈ [0, 1];
(iii) Gi(t, s) ≥ δiGi(t, t)Gi(s, s),∀t, s ∈ [0, 1].

where C1 = 1, δ1 = 1;C2 = 1
sin
√
A
, δ2 =

√
A sin

√
A.

Lemma 2.3. If g(t) ∈ C[0, 1], g(t) ≥ 0, then the unique solution u(t) of the BVP (2.1) satisfies:

min
1
4≤t≤ 3

4

u(t) ≥ d1‖u‖0, min
1
4≤t≤ 3

4

(−u
′′
(t)) ≥ d2‖u

′′
‖0.

where d1 =
√
A sin2√AC0D1

M1
, d2 =

√
A sin2

√
AD2, C0 =

∫ 1

0
G1(s, s)G2(s, s)ds,

M1 =
∫ 1

0 G1(s, s)ds,Di = min
1
4≤t≤ 3

4

Gi(t, t), (i = 1, 2).
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Proof. By(2.4) and (ii) of Lemma2.2, we have

u(t) =
∫ 1

0

∫ 1

0
G1(t, s)G2(s, τ)g(τ)dτds

≤ C1C2

∫ 1

0

∫ 1

0
G1(s, s)G2(τ, τ)g(τ)dτds

≤ C1C2M1

∫ 1

0
G2(τ, τ)g(τ)dτ

So,

‖u(t)‖0 ≤ C1C2M1

∫ 1

0
G2(τ, τ)g(τ)dτ.

Using (iii) of Lemma2.2, we have:

u(t) ≥ δ1δ2

∫ 1

0

∫ 1

0
G1(t, t)G1(s, s)G2(s, s)G2(τ, τ)g(τ)dτ

= δ1δ2C0G1(t, t)
∫ 1

0
G2(τ, τ)g(τ)dτ

≥ δ1δ2C0

C1C2M1
G1(t, t)‖u(t)‖0

So,

min
1
4≤t≤ 3

4

u(t) ≥ δ1δ2C0D1

C1C2M1
‖u(t)‖0

=
√
A sin2√AC0D1

M1
‖u(t)‖0

= d1‖u(t)‖0.

By (2.6) and (ii) of Lemma2.2, we have:

−u
′′
(t) =

∫ 1

0
G2(t, τ)g(τ)dτ

≤ C2

∫ 1

0
G2(τ, τ)g(τ)dτ

So, we have:

‖u
′′
(t)‖0 = C2

∫ 1

0
G2(τ, τ)g(τ)dτ.

Using (iii) of Lemma2.2, We have:

−u
′′
(t) =

∫ 1

0
G2(t, τ)g(τ)dτ

≥ δ2

∫ 1

0
G2(t, t)G2(τ, τ)g(τ)dτ

= δ2G2(t, t)
∫ 1

0
G2(τ, τ)g(τ)dτ

≥ δ2G2(t, t)
C2

‖u
′′
(t)‖0.
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So,

min
1
4≤t≤ 3

4

(−u
′′
(t)) ≥ δ2D2

C2
‖u

′′
(t)‖0

=
√
A sin2

√
AD2‖u

′′
(t)‖0

= d2‖u
′′
(t)‖0

Let X be a Banach space and K ⊂ X in a cone. Suppose α, β : X → R+ are two continuous convex
functionals satisfying α(λu) = |λ|α(u), β(λu) = |λ|β(u), for u ∈ X,λ ∈ R, and ‖u‖ ≤M max{α(u), β(u)},
for u ∈ X and α(u) ≤ α(v) for u, v ∈ K,u ≤ v,where M > 0 is a constant.

Theorem 2.1. ([10]) Let r2 > r1 > 0, L > 0 be constants and

Ωi = {x ∈ X : α(x) < ri, β(x) < L}, i = 1, 2,

two bounded open sets in X. Set

Di = {x ∈ X : α(x) = ri}, i = 1, 2.

Assume T : K → K is a completely continuous operator satisfying

(A1) α(Tx) < r1, x ∈ D1
⋂
K;α(Tx) > r2, x ∈ D2

⋂
K;

(A2) β(Tx) < L, x ∈ K;
(A3) there is a p ∈ (Ω2

⋂
K) \ {0} such that α(p) 6= 0 and α(x+ λp) ≥ α(x), for all x ∈ K and λ ≥ 0.

Then T has at least one fixed point in (Ω2\Ω1)
⋂
K.

3 The main results

Let X = C4[0, 1] be the Banach space equipped with the norm ‖u‖ = max
t∈[0,1]

| u(t) | + max
t∈[0,1]

|

u
′(t) | + max

t∈[0,1]
| u′′(t) | + max

t∈[0,1]
| u′′′(t) |, and K = {u ∈ X : u(t) ≥ 0, u′′(t) ≤ 0, min

1
4≤t≤ 3

4

u(t) ≥

d1‖u‖0, max
1
4≤t≤ 3

4

(−u′′(t)) ≥ d2‖u
′′‖0} is a cone in X.

Define two continuous convex functionals α(u) = max
t∈[0,1]

|u(t)|+ max
t∈[0,1]

|u′′(t)| and β(u) = max
t∈[0,1]

|u′(t)|+

+ max
t∈[0,1]

|u′′′(t), for each u ∈ X, then‖u‖ ≤ 2 max{α(u), β(u)} and α(λu) = |λ|α(x), β(λu) = |λ|β(u), for

u ∈ X,λ ∈ R; α(u) ≤ α(v) for u, v ∈ K,u ≤ v.
In the following, we denote

B =
∫ 1

0
G2(τ, τ))dτ,

F =
∫ 1

0

sin
√
Aτ

sin
√
A

dτ

η0 = 1
C2B(C1M1 + 1) , η1 = 1∫ 3

4
1
4
G2( 1

2 , τ)dτ
, η2 = 2

3C2B + 4F , θ = {d1

2 ,
d2

2 }.

We will suppose that there are L > b > θb > c > 0 such that f(t, u, v, u0, v0) satisfies the following growth
conditions:

(H3) f(t, u, v, u0, v0) < cη0

λ
, for (t, u, v, u0, v0) ∈ [0, 1]× [0, c]× [−L,L]× [−c, 0]× [−L,L],
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(H4) f(t, u, v, u0, v0) ≥ bη1

λ
, for (t, u, v, u0, v0) ∈ [ 1

4 ,
3
4 ] × [θb, b] × [−L,L] × [−b, 0] × [−L,L]

⋃
[ 1

4 ,
3
4 ] ×

[0, b]× [−L,L]× [−b,−θb]× [−L,L],
(H5) f(t, u, v, u0, v0) < Lη2

λ
, for (t, u, v, u0, v0) ∈ [0, 1]× [0, b]× [−L,L]× [−b, 0]× [−L,L].

Let f1(t, u, v, u0, v0) = f1(t, u∗, v∗, u∗0, v∗0), where

u∗ = max{max(u, 0), b}, v∗ = max{max(v,−L), L},
u∗0 = max{max(u0,−b), 0}, v∗0 = max{max(v,−L), L}.

We denote

(Tu)(t) = λ

∫ 1

0

∫ 1

0
G1(t, s)G2(s, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτds, (3.1)

(Tu)
′
(t) = λ[

∫ 1

t

∫ 1

0
G2(s, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτds

−
∫ 1

0

∫ 1

0
sG2(s, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτds], (3.2)

(Tu)
′′
(t) = −λ

∫ 1

0
G2(t, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτ, (3.3)

(Tu)
′′′

(t) = −λ
∫ 1

0

∂G2(t, τ)
∂t

f1(τ, u(τ), u
′
(τ), u

′′
(τ), u

′′′
(τ))dτ. (3.4)

Lemma 3.1. Suppose (H1) hold. Then T : K → K is completely continuous. Suppose (H1) (H2) hold.
Then T : K → K is completely continuous.

Proof. For u ∈ K, by (3.1) and (3.3) with Lemma 2.2, there is Tu > 0, (Tu)′′ ≤ 0. so

‖Tu‖0 = max
t∈[0,1]

| λ
∫ 1

0

∫ 1

0
G1(t, s)G2(s, τ)f1(t, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτds |

≤ λ
∫ 1

0

∫ 1

0
C1C2G1(s, s)G2(τ, τ)f1(t, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτds

= λC1C2M1

∫ 1

0
G2(τ, τ)f1(t, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτ,

‖(Tu)
′′
‖0 = max

t∈[0,1]
| −λ

∫ 1

0
G2(t, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτ |

≤ λC2

∫ 1

0
G2(τ, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτ

By Lemma 2.2, (ii) and (3.1) (3.3),we have:

min
1
4≤t≤ 3

4

u(t) = min
1
4≤t≤ 3

4

λ

∫ 1

0

∫ 1

0
G1(t, s)G2(s, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτds

≥ λδ1δ2

∫ 1

0

∫ 1

0
G1(t, t)G1(s, s)G2(s, s)G2(τ, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτ

≥ λδ1δ2C0G1(t, t)
∫ 1

0
G2(τ, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτ

≥ λδ1δ2C0D1

∫ 1

0
G2(τ, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτ

≥ λδ1δ2C0D1

λC1C2M1
‖Tu‖0

= d1‖Tu‖0,
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min
1
4≤t≤ 3

4

(−(Tu)
′′
(t)) = min

1
4≤t≤ 3

4

λ

∫ 1

0
G2(t, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτ

≥ λδ2

∫ 1

0
G2(t, t)G2(τ, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτ

≥ λδ2G2(t, t)
∫ 1

0
G2(τ, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτ

≥ λδ2G2(t, t)
C2

‖(Tu)
′′
‖0

≥ λδ2D2

λC2
‖(Tu)

′′
‖0

= d2‖(Tu)
′′
‖0,

So we can get T (K) ⊂ K. LetB ⊂ K is bounded, it is clear that T (B) is bounded. Using f1, G1(t, s), G2(t, s)
is continuous, We show that T (B) is equicontinuous. By the Arzela-Ascoli theorem, a standard proof
yields T : K → K is completely continuous.

Theorem 3.1. Suppose (H1)-(H5) hold. Then BVP (1.1) has at least one positive solution u(t) satisfying
c < α(u) < b, β(u) < L.

Proof. Take Ω1 = {u ∈ X : |α(u)| < c, |β(u) < L|}, Ω2 = {u ∈ X : |α(u)| < b, |β(u) < L|}, two bounded
open sets in X, and D1 = {u ∈ X : α(u) = c}, D2 = {u ∈ X : α(u) = b}.

By Lemma 3.1, T : K → K is completely continuous,and there is a p ∈ (Ω2
⋂
K)\{0} such that

α(p) 6= 0 for all u ∈ K and λ ≥ 0.

‖Tu‖0 = |λ
∫ 1

0

∫ 1

0
G1(t, s)G2(s, τ)f1(t, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτds|

≤ λC1C2M1

∫ 1

0
G2(τ, τ)f1(t, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτ

≤ λC1C2M1

∫ 1

0
G2(τ, τ)dτ × cη0

λ

= C1C2M1Bcη0,

‖(Tu)
′′
‖0 = | − λ

∫ 1

0
G2(t, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτ |

≤ λC2

∫ 1

0
G2(τ, τ)dτ × cη0

λ

= C2Bcη0,

Hence, for u ∈ D1
⋂
K,α(u) = c, we get

α(Tu) = ‖Tu‖0 + ‖(Tu)
′′
‖0 < C1C2M1Bcη0 + C2Bcη0 = (C1C2M1B + C2B)cη0.

Whereas for u ∈ D2
⋂
K,α(u) = b, there is ‖u‖0 ≥

b

2 or ‖u′′‖0 ≥
b

2 , By Lemma 2.4, we get

min
1
4≤t≤ 3

4

u(t) ≥ d1‖u‖0 ≥
d1b

2 or min
1
4≤t≤ 3

4

(−u
′′
(t)) ≥ d2ξ

c2
‖u

′′
‖0 ≥

d2b

2 .
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Therefore, from (H4) and (3.3), we have

| (Tu)
′′
(1
2) | =| λ

∫ 1

0
G2(1

2 , τ)f1(τ, u(τ), u
′
(τ), u

′′
(τ), u

′′′
(τ))dτ |

≥ λ
∫ 3

4

1
4

G2(1
2 , τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτ

≥ λ× bη1

λ

∫ 3
4

1
4

G2(1
2 , τ)dτ

= b.

So,

α(Tu) ≥| (Tu)
′′
(1
2) |= b.

By (3.2) (3.4) and (H5), we have

‖(Tu)
′
‖0 = max

t∈[0,1]
| λ
∫ 1

t

∫ 1

0
G2(s, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτds

−
∫ 1

0

∫ 1

0
sG2(s, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτds |

< max
t∈[0,1]

| λ
∫ 1

t

∫ 1

0
G2(s, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτds |

+ max
t∈[0,1]

|
∫ 1

0

∫ 1

0
sG2(s, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτds |

≤ λ |
∫ 1

0

∫ 1

0
(1 + s)G2(s, τ)f1(τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))dτds |

≤ λ× η2L

λ
|
∫ 1

0

∫ 1

0
(1 + s)G2(s, τ)dτds |

≤ 3C2

2 η2L× |
∫ 1

0
G2(τ, τ)dτ |

= 3C2B

2 η2L,

‖(Tu)
′′′
‖0 = max

t∈[0,1]
| − λ

∫ 1

0

∫ 1

0

∂G2(t, τ)
∂t

f1(t, u(τ), u
′
(τ), u

′′
(τ), u

′′′
(τ))dτds|

≤ λ
∫ 1

0
2sin

√
Aτ

sin
√
A
|f1(t, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ))|dτ

≤ λ× η2L

λ
2
∫ 1

0

sin
√
Aτ

sin
√
A

dτ

= 2Fη2L.

Hence, for

β(Tu) = ‖(Tu)
′
‖0 + ‖(Tu)

′′′
‖0 <

3C2B

2 η2L+ 2Fη2L < (3C2B

2 + 2F )η2L = L.

Theorem 2.1 implies there is u ∈ (Ω2\Ω1)
⋂
K such that u = Tu. So, u(t) is a positive solution for

BVP (1.1) satisfying
c < α(u) < b, β(u) < L.

Thus, Theorem 3.1 is completed.
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4 Conclusion

In this paper, the existence of at least one positive solutions for the fourth-order two point boundary
value problem with all order derivatives is considered. By using a new cone fixed point theorem, the
sufficient conditions for the existence of positive solutions of the boundary value problem are verified.
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