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Abstract In this paper, by the use of a new fixed point theorem and the Boundary Value Problem’s
Green function. the existence of at least one positive solutions for the fourth-order two point boundary
value problem with all order derivatives

{u(4)(t) +u’ (8) = M (¢ ult), u' (¢
u(0) =u(l) =u’(0) =’ (1) =

is considered, where f is a nonnegative continuous function and A > 0,0 < 4 < 72,

), (),u” (1)), t € [0,1],
0.
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1 Introduction

The deformation of an elastic beam in equilibrium state, whose two ends are simply supported, can
be described by a fourth-order ordinary equation boundary value problem. Owing to its significance
in physics, the existence of positive solutions for the fourth-order boundary value problem has been
studied by many authors using nonlinear alternatives of Leray-Schauder, the fixed point index theory, the
Krasnosel’skii’s fixed point theorem and the method of upper and lower solutions, in reference [1-9][11].
In recent years, there has been much attention on the fourth-order differential equations with one or two
parameters.

By the fixed point theorem and theory in cone [4], Bai investigated the following fourth-order two
point boundary value problem

{u(4)(t) — )\f(u(t?/) =0,t € 0, 1],
uw(0) =u(l)=u (0)=u (1) =0.

where A is a normal number, f : [0, 1] x [0,00) — [0, 00)
By the monotone operator theorem and the critical point theory, Li [7] proved the existence and
multiplicities of positive solutions for the fourth-order two point boundary value problem

{MWﬂ—fWGL=&t§@JL
u(0)=u(l)=u (0)=u (1) =0.

where f:[0,1] x R! — R! is continuous.

All the above works were done under the assumption that the first order derivative o o W is not
involved explicitly in the nonlinear term f. We are concerned with the existence of positive solutions for
the fourth-order two-point boundary value problem

{m@@+w<>—xﬂtw>u
w(0) = u(1) =" (0) =" (1)

o (t),u” ().t €]0,1],
0" ) e 01 m
Throughout, we assume
(Hi) A>0,0< A< 7%

(Hz) f:]0,1] x [0,00) x R — [0, 00)is continuous.
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2 Preliminary

Let Y = C[0, 1] be the Banach space equipped with the norm ||ullq = m[%)i] lu(t)].

Set A1, A2 be the roots of the polynomial P()\) = A2 + A\, namely A\; = 0, \o = —A. By (Hy), it is
easy to see that —m2 < Ay < 0.

Let Gy(t,s)(i = 1,2) be the Green’s function of the linear boundary value problem:—u" + \u(t) =
0,u(0) = u(1) = 0.Then, carefully calculation yield:

_[s(1—-1),0<s<t<1,
Gl(t’s)_{t(ls),ogtgsgl,

sin v/ Assin VA(1 — t)

JAsin VA ,0<s<t <1,
Galtys) = sin /At sin VA(1 — s) 0<i<s<i1
VAsin VA T T
Lemma 2.1. (/8]) Suppose (H1)(Hz) hold. Then for any ¢(t) € C[0,1], BVP
u®(t) + Au” (t) = g(t),t € [0,1]
L0 o) m ) 2y 24
has a unique solution Lo
u(t) :/0 /0 G1(t, s)Ga(s, 7)g(T)drds, (2.2)

where ( )
s(1—-1),0<s<t<1,
Gl(t’s)_{t(l—sLOgtgsgL

sin VAT sin \/Z(l )

,0<7<s<1,
Gg(s 7_) _ \/Zsin\/z =
’ sin v/ Assin VA(l — 1) 0<s<r<]
,0<s<7<1.
VAsin VA
By u(t),we get
1
:/ / Ga(s,7)g des—/ / sGa(s, T)g(T)drds, (2.3)
t Jo
= —/ Ga(t,m)g(r)dr, (2.4)
0
" L oGy (t, T
u(t) = — / %)g(r)dr. (2.5)
0

Lemma 2.2. ([8]) Assume(H;) (Hz) hold. Then one has:

(i) Gi(t,s) >0,Vt,s €[0,1];
(ii) G;(t,s) < C;Gi(s,s),Vt, s €[0,1];
(iii) Gi(t,s) > §;Gi(t,t)G,(s,s),Vt,s € [0,1].

1
where C1 = 1,60 = 1;Csy = m,(& = VAsin VA.

Lemma 2.3. If g(t) € C[0,1],g(t) > 0, then the unique solution u(t) of the BVP (2.1) satisfies:

min_u(t) > difullo, min (—u (¢)) = da|lu” |lo-
<< l<i<d

2 1
where di = \/ZSIHM\/ZCODl dy = VAsin? VAD,, Cy = / G1(s,s)Ga(s, s)ds
1 0
fo Gi(s,s)ds, D; = min_G;(t, 1), (i = 1,2).
<<
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Proof. By(2.4) and (ii) of Lemma2.2, we have

u(t):/o /0 G1(t,8)Ga(s,T)g(T)drds
1ol
§C1C’2/O /0 G1(s,s)Ga(1,7)g(T)drds
SC'1C2M1/O Go(1,7m)g(r)dr

So,

1
lu()llo < CLCaM, / Ga(r, 7)g(r)dr.
0

Using (#79) of Lemma2.2, we have:

u(t) > 6165 / / G (t,1)G1 (5, 5)Ga(s, 5)Ga(r, T)g(r)dr

1
2515200G1(t»t)/ Ga(7,7)g(7)dT
0

0102Cp

—_— t,t t
> S Gyt Ol

So,

0102Co D1
—||u(t

> e u®lo
\/Zsin2 \/ZCODl

= R )l

= dafu(®)llo-

By (2.6) and (ii) of Lemma2.2, we have:

1
()= [ Galt.Pg(r)ar
SCQ/[; Go(7,7)g(T)dT

So, we have:
1
llw (®)lo :CQ/ Gao(r,7)g(7)dT.
0
Using (#4i) of Lemma2.2, We have:
" 1
() = / Golt, 7)g(7)dr
0
1
> 6 [ Galt, )Gl P)g(r)dr
0
1
:52G2(t,t)/ Gao(r,7)g(T)dr
0
02Go(t, 1)

= =2l ()l
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So,

. " 5 D 12
min, (—u" (1) > 22 " ()
y 2

= VAsin? VAD,|[u" ()]|o
= daf|u” (D)o
O
Let X be a Banach space and K C X in a cone. Suppose a, 3 : X — R are two continuous convex
functionals satisfying a(Au) = |A|a(u), B(Au) = |A|B(u), for u € X, X € R, and |Ju|| < M max{a(u), B(u)},
for u € X and a(u) < a(v) for u,v € K,u < v,where M > 0 is a constant.
Theorem 2.1. ([10]) Let ro > r1 > 0,L > 0 be constants and
2, ={zeX:alx)<r,Bx)<L},i=1,2,
two bounded open sets in X. Set
Di={zeX:alx)=r}i=12.
Assume T : K — K is a completely continuous operator satisfying

(A1) a(Tz) <ri,z e DINK;a(Tx) > re,x € Dy K;
(A2) p(Tz) < L,z € K;
(A3) there is a p € (22 K) \ {0} such that a(p) # 0 and a(z + Ap) > a(x), for allx € K and X > 0.

Then T has at least one fized point in (2:\21) (N K.

3 The main results

Let X = C*[0,1] be the Banach space equipped with the norm |jul = rn[éa)i | w(t) | + m{g}i] |
telo, telo,
W) | +max | u'(t) | + max | w () |, and K = {u € X : u(t) > 0,u”(t) < 0, min_u(t) >
te[0,1] t€[0,1] lg<d

—4
"

di||ullo, max (—u”(t)) > da||u”]jo} is a cone in X.
1<t<2

Define two continuous convex functionals (u) = max |u(t)| + max |u” (¢)| and B(u) = max |u ()] +
t€[0,1] te[0,1] €1[0,1]

+ m[aa)i lu" (), for each u € X, then||u|| < 2max{a(u), B(u)} and a(\u) = |Aa(z), B(Au) = |A|B(w), for
te[o,

u€ X, X € R; alu) < alv) for u,v € K,u < wv.
In the following, we denote

B= /Ong(T, )dr,

F:/l sin\/ZT
0

——dr
sin \/Z
1

! 2 d dy

= ) = ) = 79 = )
PGB )" T T e, ¢ 3GB AR 53
1

We will suppose that there are L > b > 6b > ¢ > 0 such that f(t,u,v,uo,vo) satisfies the following growth
conditions:

(Hs) f(t,u,v,up,v0) < ﬂ/\o’ for (t,u,v,up,vp) € [0,1] x [0,¢] X [-L, L] x [—¢,0] x [-L, L],
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(H) (b0, 0,00) > L2 for (1,0, ) € [3,3] % (00, 8] x [, L] x [b,0] x [~L, 2] UL, 2] x
[0,0] x [-L, L] x [-b, —0b] x [—L, L],
(Hs) f(t, u,v,u0,v0) < %, for (t,u,v,up,v9) € [0,1] x [0,b] X [-L, L] x [=b,0] x [-L, L].

Let f1(t,u,v,ug,v0) = f1(t,u*, v*, us,vs), where

u* = max{max(u,0), b}, v* = max{max(v,—L), L},
uy = max{max(ug, —b),0}, vy = max{max(v,—L), L}.
We denote
(Tw)(t) = / / Gi(t, )Ga(s, ) fi(mu(r),u (7),u” (7), 4 (7))drds, (3.1)

"

//camflm() () (7)o (7)) drds

- /O /0 sGa(s, ) i (mu(r), (), 0 (7). (7))drds], (3.2)
(Tw)" (t) = —X / Gao(t,7) f1(ru(r), ' (r),u (1), u” (r))dr, (3.3)
(Tw)" () = —A / 6G2 BT () o (7)o (), (7)) (3.4)

Lemma 3.1. Suppose (Hy) hold. Then T : K — K is completely continuous. Suppose (Hy) (Hz) hold.
Then T : K — K s completely continuous.

Proof. For u € K, by (3.1) and (3.3) with Lemma 2.2, there is Tu > 0, (Tu)” < 0. so

1 1
| Tullo = max |)\/ /0 Gi(t, 8)Ga(s,7) fi(t,u(r),u (7),u (7),u (7))drds |

te[0,1]

"

S>‘/0 /o C1CoG (5, 8)Gol(r, ) filt,u(r),u (1), u” (1), 4 (7))drds
1

:)\C’1CQM1/ Go(r, 7) Lt u(r),u (1), (), 4" (7))dr,
0

1(Tw)"|jo = max |—)\/ Go(t,7) fr(mou(r),u (1), u (1), u (7))d |

te(0,1] 1
S)\C’g/ Go(r,7) fi(r,u(r),u (7),u (7),u (7))dr
0

By Lemma 2.2, (i) and (3.1) (3.3),we have:

" 1"

ini/\/o /0 G1(t,8)Ga(s,7) fi(m,u(),u (7),u (7),u (7))drds

m
<t<% 1<t<

> 016, /O /O Gr(L )G (5, 5)Ca(s, )G (7, 7) fu (7 u(r), ' (1), 0 (7), 0 (7)) dr

’ 1" "

2)\(5162C0G1(t,t)/0 Go(r,7) fi(r,u(7),u (7),u (7),u (7))dr

1
> )\515200D1/0 Go(r,7) fi(r,u(r),u (7),u (7),u (7))dr

\S162Co Dy 7]
= ANC,C5 M, 0
= dy||Tullo,
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2)\62/0 Ga(t, )Ga (1, 7) fr(ryu(r),u (7),u (7),u (7))dr

2)\(52G2(t,t)/0 Go(r, ) fi(T,u(T),u (7),u (7),u (7))dr

Ao Go(t,t /
> 202000 g
Aé D 1"
= S 1T o
:d2||<Tu> "l

So we can get T(K) C K.Let B C K is bounded, it is clear that T'(B) is bounded. Using f1, G1(t, s), Ga(t, s)
is continuous, We show that T'(B) is equicontinuous. By the Arzela-Ascoli theorem, a standard proof
yields T': K — K is completely continuous. O

Theorem 3.1. Suppose (Hy)-(Hy) hold. Then BVP (1.1) has at least one positive solution u(t) satisfying
c<a(u)<bpB(u) <L

Proof. Take 21 = {u € X : |a(u)| < c |B(u) < LI}, 22 = {u € X : |a(u)| < b, |B(u) < L|}, two bounded
open sets in X, and D1 ={u € X : a(u) =c},Ds = {u € X : a(u) = b}.

By Lemma 3.1, T : K — K is completely continuous,and there is a p € (22 K)\{0} such that
a(p) #0 for all w € K and A > 0.

"

I Tullo = |)\/0 /0 Gr(t, 5)Ga(s, 7)ot u(r), ' (1), 0 (), 0" (7)) drds|
1
< )\CngMl/ Gao(r,7) filt,u(r),u (7),u (7), 4" (7))dr

<)\0102M1/ G2 T T)dTX ZO

= C1Cy M, Ben,

’ " 1"

. 1
1(T) ||o:|*/\/0 Ga(t, 7) fu(r,u(T),u (1), u (7),u (7))d7|

1
< )\Cg/ Go(1,7)dT X el
0 A

= CyBeny,
Hence, for u € D1 (K, a(u) = ¢, we get

a(Tu) = ||Tullo + [[(Tw)" [lo < CLC2MyBeng + CyBeng = (CLC2My B + CoB)erp.
. b " b
Whereas for u € Dy (| K, a(u) = b, there is |Jullo > 5 or llu |lo > 2 By Lemma 2.4, we get

dyb " d
min_ u(t) > dyllullo > —— or min (—u (t)) > 25
jsi<i 2 jsi<i

dab
L= G

JAAM Copyright © 2016 Isaac Scientific Publishing



Journal of Advances in Applied Mathematics, Vol. 2, No. 1, January 2017 21

Therefore, from (Hy) and (3.3), we have
[T (5)] =] A/ Galg V(). () ()" (7)) |

zAA Gg(ﬁ,f)fl(f,u(f),u (), (), (7)) dr
X bZl/; GQ(%,T)dT

So,

o(Tw) 2| (Tw)(3) |= b

By (3.2) (3.4) and (Hs), we have

11

I(Tw) |l = max |/\/ / Gols, ) fa (o u(r) (), (7), 0" (7)) drds

te[0,1]

7/m/‘“%@””“ﬂ“U%JU%ﬁTﬂwmh»mds
= el A/ / Ga(s,7) fu(r,u(r),u (r),u (r),u” (7))drds |

tel0,1]

+ max |/0 /0 sGa(s,7) f1(m,u(r),u (7),u (7),u (7))drds |

t€0,1]

<A /0 /0 (1+s)Ga(s,7) f1(m,u(r),u (7),u (7),u (7))d7ds |

@ | /1/1(1+5)G2(s,7’)d7'd5 \

—nng / Go(r,7)dT |

30
= 2L,

I /\

’ "

||(Tu)m\|0 = max | — )\/ / 8G2 t,7) 1t u(r),u (1),u (T),um(r))drds|

tel0,1]

<) / PSIVAT, - e (7, (), (7))l

sin VA
<Ax 772L / sm\/>7'

A 0 Sln\/>
=2FnL.

Hence, for

’ 111 3CB 3CB
B(Tu) = [[(Tw) [lo + |(Tw) " lo < 2= L + 2Fn L < (2

+2F)n2L = L.

Theorem 2.1 implies there is u € (£\2;) () K such that u = Tu. So, u(t) is a positive solution for
BVP (1.1) satisfying

c<a(u) <b pf(u) <L
Thus, Theorem 3.1 is completed. O
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Conclusion

In this paper, the existence of at least one positive solutions for the fourth-order two point boundary
value problem with all order derivatives is considered. By using a new cone fixed point theorem, the
sufficient conditions for the existence of positive solutions of the boundary value problem are verified.
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