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Abstract The purpose of this paper is to study semi-prequasi-invex type multiobjective opti-
mization problem with inequality constraints and generalized nonlinear fractional programming.
Two alternative theorems and an optimality necessary condition for multiobjective optimization
problem are obtained. Moreover, a strong duality theorem and a saddle point theorem for generalized
nonlinear fractional programming are derived. Our results improve and generalize the corresponding
ones in the literature.

Keywords: Semi-prequasi-invex functions, multiobjective optimization problem, generalized non-
linear fractional programming.

1 Introduction and Preliminaries

It is well known that convexity and generalized convexity play an important role in nonlinear programming,
convex analysis, and vector optimization theory etc.. Therefore, there are many literatures studying on
this subject. The characterizations for the classical invexity was considered by Ben-Israel and Mond [1],
Martin [2]. In recent years, the properties and applications of preinvexity have been investigated by many
authors (see [2], [3], [4], [5], [6], [7], [8]). In [9], Yang introduced the prequasi-invex type functions and
discussed prequasi-invex type multiobjective optimization problem as applications. Yang et al. [10], Luo
and Xu [11] presented some properties of prequasi-invex functions and discussed some of its applications in
optimization problem. Recently, Peng et al. [12] studied characterizations and criterions of vector-valued
D−semiprequasi-invex mappings and obtained an important application in vector optimization problem.
Some characterizations and applications of semi-prequasi-invexity can be found in Zhao [13], Zhao et al.
[14] and Mishra [15]. Under four sets assumptions Xu [16] discussed four theorems of strong duality.

Motivated and inspired by the results in [9], [13], [16], in this paper we mainly study the applications of
semi-prequasi-invex type multiobjective optimization problem with inequality constraints and generalized
nonlinear fractional programming. Two alternative theorems and an optimality necessary condition
for multiobjective optimization problem are given. Moreover, by employing the alternative theorem, a
strong duality theorem and a saddle point theorem for generalized nonlinear fractional programming are
discussed. Our results improve the corresponding ones in [9], [13], [16].

Now, we recall some concepts about semi-prequasi-invex functions.
Definition 1. (see [3],[9]) A set E ⊆ Rn is called to be semi-connected if there exists a vector function
η : E × E × [0, 1]→ E, such that

x, y ∈ E, λ ∈ [0, 1]⇒ y + λη(x, y, λ) ∈ E.

Definition 2. (see [9]) Let E ⊆ Rn be a semi-connected set with respect to η : E × E × [0, 1]→ E. We
call that f : E → Rn is semi-prequasi-invex if, for all x, y ∈ E, λ ∈ [0, 1],

f(y + λη(x, y, λ)) ≤ max {f(x), f(y)}.

Example 3. This example illustrates the existence of semi-connected set. Let E = [−1, 1], and

η(x, y, λ) =


x− y − λ,
x− y + λ,
− 3

4 − y + λ,
2
3 − y − λ,
−1− y + λ,

0 ≤ x ≤ 1, 0 ≤ y ≤ 1;
−1 ≤ x < 0, −1 ≤ y < 0;
0 < x ≤ 1, −1 ≤ y < 0;
−1 ≤ x < 0, 0 ≤ y ≤ 1;
x = 0, −1 ≤ y < 0.
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Clearly, E is a semi-connected set with respect to η.

Next, we give two properties of semi-prequasi-invex functions.

Theorem 4. Let E ⊆ Rn be a semi-connected set with respect to η : E × E × [0, 1] → E, assume
f(x) : E → R is a semi-prequasi-invex function on E. Then, λf(x) is also a semi-prequasi-invex function
on E with respect to the same η(x, y, θ), where λ ≥ 0.

Proof. Since f(x) is a semi-prequasi-invex function on E, then for any θ ∈ [0, 1] and x, y ∈ E, we have

f(y + θη(x, y, θ)) ≤ max{f(x), f(y)}.

Note that λ ≥ 0, then we get

λf(y + θη(x, y, θ)) ≤ λmax{f(x), f(y)} = max{λf(x), λf(y)},

that is, λf(x) is also a semi-prequasi-invex function.

Theorem 5. Let E ⊆ Rn be a semi-connected set with respect to η(x, y, θ), assume gj(x) : E → R (j =
1, · · · ,m), are semi-prequasi-invex functions on E with respect to the same η(x, y, θ). Then,

S = {x ∈ E : gj(x) ≤ 0, j = 1, · · · ,m},

is semi-connected with respect to η(x, y, θ).

Proof. Let x, y ∈ S, then we have x, y ∈ E and max{gj(x), gj(y)} ≤ 0 for all j ∈ {1, · · · ,m}. Note that
gj(x) are semi-prequasi-invex functions on E with respect to the vector-valued function η(x, y, θ), then
for any θ ∈ [0, 1] and j ∈ {1, · · · ,m}, we get

gj(y + θη(x, y, θ)) ≤ max{gj(x), gj(y)} ≤ 0,

which implies that y + θη(x, y, θ) ∈ S. Therefore, S is semi-connected with respect to η(x, y, θ). This
completes the proof.

2 Alternative Theorems and Optimality Condition For Multiobjective
Optimization Problem

In this section, we first establish two alternative theorems, then, we discuss an optimality necessary
condition for multiobjective optimization problem with inequality constraints by using the alternative
theorems.

Consider the following inequality constrained multiobjective optimization problem (CMP ).

(CMP ) : min f(x) = (f1(x), · · · , fp(x))T
s.t. g(x) ≤ 0, x ∈ E,

where fi : E → R (i = 1, · · · , p), gj : E → R (j = 1, · · · ,m), are real-valued functions, E ⊆ Rn is a
semi-connected set with respect to η : E × E × [0, 1]→ E and S = {x ∈ E : gj(x) ≤ 0, i = 1, · · · ,m}
denotes the feasible set of (CMP ).

Throughout this section, let

Rm+ = {x ∈ Rm
∣∣ x = (x1, · · · , xm), xi ≥ 0, 1 ≤ i ≤ m},

Rm++ = {x ∈ Rm
∣∣ x = (x1, · · · , xm), xi > 0, 1 ≤ i ≤ m}.

Then, we recall the definitions of efficient solution and weakly efficient solution.

Definition 6. (see [9]) A point x ∈ S is called a global efficient solution of (CMP ), if there does not
exist any point y ∈ S, such that

f(y) ∈ f(x)−Rm+ \{0}.
A point x̄ ∈ S is called a local efficient solution of (CMP ), if there is a neighborhood N(x) of x̄, such

that there does not exist any point y ∈ S ∩N(x), such that

f(y) ∈ f(x)−Rm+ \{0}.
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Definition 7. (see [9]) A point x̄ ∈ S is called a global weakly efficient solution of (CMP ), if there does
not exist any point y ∈ S, such that

f(y) ∈ f(x)−Rm++.

A point x̄ ∈ S is called a local weakly efficient solution of (CMP ), if there is a neighborhood N(x) of
x̄, such that there does not exist any point y ∈ S ∩N(x), s.t.

f(y) ∈ f(x)−Rm++.

Similarly to Lemma 1 in [3], we obtain the Lemma 8 as follows, which will be used later.

Lemma 8. Let E be a semi-connected set of Rn, and fi(x), i = 1, · · · ,m, be semi-prequasi-invex functions.
Then exactly one of the following two systems is solvable:

(i) there exists x̄ ∈ E, s.t. f1(x̄) < 0, · · · , fm(x̄) < 0;
(ii) there exists λ ∈ Rm+ \{0}, s.t.

m∑
i=1

λifi(x) ≥ 0, ∀x ∈ E.

In the sequel, by using the above lemma we give the following Lemma 9.

Lemma 9. Let E ⊆ Rn be a nonempty compact semi-connected set with respect to η : E×E× [0, 1]→ E,
and fi(x), i ∈ M , be lower semi-continuous semi-prequasi-invex functions with respect to the same
η(x, y, θ) on E, where M is finite or infinite index sets. Then, exactly one of the following two systems
holds:

(i) fi(x) ≤ 0, i ∈M have a solution on E;
(ii) there exists m ≥ 1, {i1, · · · , im} ⊆M and p ∈ Rm+ \{0}, s.t.

m∑
j=1

pifij (x) > 0, for all x ∈ E.

Proof. Obviously, (ii) does not hold when (i) holds. We only need to show that (ii) holds when (i) does
not hold.

Now, we claim that there exists sufficient small ε̄ > 0, such that fi(x) ≤ ε, i ∈M , have no solution on
E. In the sequel, we testify the above claim.

By contradiction, suppose that there exists a positive real number sequence {εk}, k = 1, 2, · · · , with
lim

k→∞
εk = 0, and for any εk > 0, there exists xk ∈ E, such that

fi(xk) ≤ εk, ∀i ∈M.

Note that E is a compact set, then the sequence {xk} must include a convergence subsequence, without
loss of generality, we may assume that {xk} is the convergence subsequence and converges to x̄. And
x ∈ E due to the closeness of E. It follows from the lower semi-continuity of fi(x) that

fi(x) ≤ 0, ∀i ∈M,

which is a contradiction. This verifies the above claim.
Then, for any ε > 0, let

X(i, ε) = {x ∈ E
∣∣ fi(x) ≤ ε}.

It follows from the above claim that there exists ε > 0, such that⋂
i∈M

X(i, ε) = ∅.

The lower semi-continuity of fi(x) (∀i ∈M) on E and the closeness of E implies that X(i, ε) is closed.
Moreover, by the finite intersection theorem, there must exist m ≥ 1, {i1, · · · , im} ⊆M , such that

m⋂
j=1

X(ij , ε) = ∅.
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which implies that the following systems have no solution,

fij (x) ≤ ε, j = 1, · · · ,m, for all x ∈ E.

Clearly, the following systems also have no solution,

fij (x) < ε, j = 1, · · · ,m, for all x ∈ E,

Note that fij (x), ∀ j = 1, 2, · · · ,m is semi-prequasi-invex function. This fact together with Lemma 8
yields that there must exist p ∈ Rm+ \{0}, such that

m∑
j=1

pij (fij (x)− ε) ≥ 0, for all x ∈ E,

and so,
m∑
j=1

pijfij (x) ≥
m∑
j=1

pijε > 0, for all x ∈ E.

The proof is complete.

Remark 10. If M is finite index sets in the above lemma, without loss of generality, we suppose that
M = {1, 2, · · · , n}, then the lemma holds for m = n.

Next, we define a numerical valued optimization problem (CMP )λ as follows, which is relevant to
(CMP ).

(CMP )λ : minλT f(x)
s.t. g(x) ≤ 0, x ∈ E,

where λ ∈ Rp, f(x), g(x), E are the same with (CMP ).

Theorem 11. Let E ⊆ Rn be a semi-connected set with respect to η : E × E × [0, 1] → E, assume
fi(x) : E → R (i = 1, · · · , p), gj(x) : E → R (j = 1, · · · ,m), are semi-prequasi-invex functions on E with
respect to the same η(x, y, θ). If x̄ is a weakly efficient solution (efficient solution) of (CMP ). Then,
there exists a vector λ ∈ Rp+\{0}, such that x̄ is an optimal solution of (CMP )λ.

Proof. Let S = {x ∈ E : gi(x) ≤ 0, i = 1, 2, · · · ,m}, by the Theorem 5 and gi(x) : E → Rn (i = 1, · · · ,m),
being semi-prequasi-invex functions on E with respect to the same η(x, y, θ), one can get that S is a
semi-connected set with respect to η(x, y, θ). Since x̄ is a weakly efficient solution of (CMP ), it follows
that the following systems do not hold on S.

fj(x)− fj(x) < 0, j = 1, 2, · · · , p.

It follows from Lemma 8, together with the semi-prequasi-invexity of fi(x) : E → R on E with respect to
the same η(x, y, θ), that there exists λ ∈ Rp+\{0}, such that

p∑
j=1

λj(fj(x)− fj(x)) ≥ 0, ∀x ∈ S.

or equivalently,
p∑
j=1

λjfj(x) ≥
p∑
j=1

λjfj(x), ∀x ∈ S.

This completes the proof.
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3 Strong Duality Theorem and Saddle Point Theorem For Generalized
Nonlinear Fractional Programming

In this section, we first recall some definitions and lemmas for semi-prequasi-invex type generalized
nonlinear fractional programming ( in short, (GNFP )). Then, we show the strong duality theorem and
saddle point theorem for (GNFP ), which improve and generalize the corresponding results in [13] and [16].

Throughout this section, we assume that ‖·‖ denotes l1-norm and

F (x) = (f1(x), · · · , fp(x))T ,
G(x) = (g1(x), · · · , gp(x))T ,
H(x) = (h1(x), · · · , hp(x))T .

Now, we consider the generalized nonlinear fractional programming problem as follows:

(GNFP ) : θ = inf
x∈S

max
1≤i≤p

{fi(x)
gi(x)},

where fi(x) : E → R, gi(x) : E → R, ∀x ∈ E, gi(x) > 0 (i = 1, · · · , p), hj(x) : E → R (j =
1, · · · ,m), E ⊆ Rn, S = {x ∈ E : hj(x) ≤ 0, j = 1, · · · ,m} 6= ∅. Clearly, the feasible set S 6= ∅, which
implies that θ < +∞.

To obtain the dual theory for (GNFP ), let us recall Definition 12 and Lemma 13 as follows(for more
details, see[13] and [16]).

Definition 12. For x ∈ E, µ ∈ Rp+, ‖µ‖ = 1 and v ∈ Rm+ , we denote

GL(x, µ, v) = µTF (x) + vTH(x)
µTG(x) ,

GE(x, v) = max
1≤i≤p

fi(x)
gi(x) +

m∑
j=1

vj max
1≤i≤p

hj(x)
gi(x) .

Let
φ1(µ, v) = inf

x∈E
GL(x, µ, v), φ2(v) = inf

x∈E
GE(x, v),

then, we define two duals of the problem (GNFP ):

(GNFD)1 : sup
µ∈Rm

+ \{0},v∈Rm
+

φ1(µ, v),

(GNFD)2 : sup
v∈Rm

+

φ2(v).

Next lemma(for more details, [13] and [16]) gives the weak duality relationship between (GNFD)1
and (GNFP ), (GNFD)2 and (GNFP ).

Lemma 13.

(i) If x ∈ S, then for any µ ∈ Rp+, ‖µ‖ = 1 and v ∈ Rm+ , we obtain

φ1(µ, v) ≤ max
1≤i≤p

fi(x)
gi(x) , φ2(v) ≤ max

1≤i≤p

fi(x)
gi(x) .

(ii) Suppose that v((GNFD)i), i ∈ {1, 2}, is the optimal value of (GNFD)i, i ∈ {1, 2}, then we can get
v((GNFD)2) = θ if v((GNFD)1) = θ.

(iii) Suppose that x̄ is an optimal solution of (GNFP ), then x̄ is a weakly efficient solution of the system
(TGNFP )1, where

(TGNFP )1 : min(F (x)− θG(x))
H(x) ≤ 0, x ∈ E.
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Remark 14. One can see that if θ = −∞, then v((GNFD)1) = v((GNFD)2) = −∞. Therefore, we
only need to consider the case that +∞ > θ > −∞.

Theorem 15. Let E ⊆ Rn be a nonempty compact semi-connected set with respect to η : E×E×[0, 1]→ E.
Assume fi(x)− θ gi(x) (i = 1, · · · , p), hj(x) (j = 1, · · · ,m), are lower semi-continuous and semi-prequasi-
invex functions on E with respect to the same η(x, y, θ). Then, we have v((GNFD)1) = v((GNFD)2) = θ,
and there exists (µ, v), which is an optimal solution of (GNFD)1.

Proof. Note that feasible set of (GNFP ) is nonempty, that is S = {x ∈ E : H(x) ≤ 0} 6= ∅. It follows
from θ = inf

x∈S
max

1≤i≤p
{ fi(x)
gi(x)} that the following systems have no solution.

fi(x)− θ gi(x) < 0, i = 1, · · · , p;
hj(x) ≤ 0, j = 1, · · · ,m, x ∈ E.

which implies that for any ε > 0, the following systems have no solution too.

fi(x)− θ gi(x) + ε ≤ 0, i = 1, · · · , p;
hj(x) ≤ 0, j = 1, · · · ,m, x ∈ E.

Note that fi(x)− θ gi(x) (i = 1, · · · , p), hj(x) (j = 1, · · · ,m), are lower semi-continuous semi-prequasi-
invex functions on E, which together with Remark 10, yield that there exists µ ∈ Rp+, v ∈ Rm+ , (µ, v) 6= 0,
such that

µT (F (x)− θG(x) +Θ) + vTH(x) > 0, for allx ∈ E, (1)

where Θ = (ε, · · · , ε) ∈ Rp++. Clearly, S 6= ∅ implies µ 6= 0. Without loss of generality, we may assume
‖µ‖ = 1.

By ∀x ∈ E,µTG(x) > 0 and (1), we have

µTF (x) + vTH(x)
µTG(x)

> θ − ε

µTG(x)
. (2)

On the other hand,
1

µTG(x) ≤
1

min
1≤i≤p

gi(x) ≤
1

inf
x∈E

min
1≤i≤p

gi(x) =: α. (3)

Then, (2) and (3) imply that GL(x, µ, v) > θ − εα, for all x ∈ E. By the arbitrariness of ε, we have

GL(x, µ, v) ≥ θ, for allx ∈ E. (4)

(4), together with Lemma 13 (i) and (ii), yields v((GNFD)1) = v((GNFD)2) = θ, and φ1(µ, v) =
inf
x∈E

GL(x, µ, v) = θ. Thus, the theorem is proved.

Next, let us give the saddle point theory for GL(x, µ, v).

Theorem 16. Let E ⊆ Rn be a nonempty semi-connected set with respect to η : E × E × [0, 1] → E.
Suppose fi(x) − θ gi(x) (i = 1, · · · , p), hj(x) (j = 1, · · · ,m), are semi-prequasi-invex functions on E
with respect to the same η(x, y, θ). If x̄ is an optimal solution of (GNFP ), and there exists x′ ∈ E, s.t.
H(x′) < 0. Then, there exist µ ∈ Rp+\{0}, v ∈ Rm+ , such that (x, µ, v) is a saddle point of GL(x, µ, v)
on E ×Rp+\{0} ×Rm+ , that is, for ∀x ∈ E, ∀µ ∈ Rp+\{0}, ∀v ∈ Rm+ , we have

GL(x, µ, v) ≤ GL(x, µ, v) ≤ GL(x, µ, v),

where

GL(x, µ, v) = µTF (x) + vTH(x)
µTG(x) .
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Proof. θ̄ is an optimal value of (GNFP ), it implies that the following systems have no solution on E.

fi(x)− θ̄gi(x) < 0, i ∈ {1, · · · , p};
hj(x) < 0, j ∈ {1, · · · ,m}.

fi(x)−θ gi(x) (i = 1, · · · , p), hj(x) (j = 1, · · · ,m), are semi-prequasi-invex functions on E with respect to
the same η(x, y, θ), which together with Lemma 8, yield that there must exist (µ, v) ∈ Rp+×Rm+ , (µ, v) 6=
0, such that

µT (F (x)− θG(x)) + vTH(x) ≥ 0, for allx ∈ E. (5)

Next, we prove that µ 6= 0. Otherwise, taking x = x′ into (5), we have vTH(x′) ≥ 0, which contradicts
with x′ ∈ E, s.t. H(x′) < 0. Obviously, we derive from G(x) > 0, µ ∈ Rp+\{0} that µTG(x) > 0, which
together with (5) lead to

GL(x, µ, v) = µTF (x) + vTH(x)
µTG(x)

≥ θ. (6)

Taking x = x into (5), it follows that

µT (F (x)− θG(x)) + vTH(x) ≥ 0. (7)

However, F (x)− θG(x) ≤ 0, µ ∈ Rp+, v ∈ Rm+ imply that

µT (F (x)− θG(x)) + vTH(x) ≤ 0. (8)

(7) and (8) imply that
µT (F (x)− θG(x)) + vTH(x) = 0. (9)

Clearly, µTG(x) > 0, dividing (9) by µTG(x), we obtain

GL(x, µ, v) = µTF (x) + vTH(x)
µTG(x)

= θ. (10)

On the other hand, for ∀µ ∈ Rp+, ∀v ∈ Rm+ , we have

µT (F (x)− θG(x)) + vTH(x) ≤ 0. (11)

Note that µTG(x) > 0, for all µ ∈ Rp+, then dividing (11) by µTG(x), we get

GL(x, µ, v) = µTF (x) + vTH(x)
µTG(x) ≤ θ. (12)

It follows from (6), (10) and (12) that for ∀x ∈ E, ∀µ ∈ Rp+\{0}, ∀v ∈ Rm+ , we have

GL(x, µ, v) ≤ GL(x, µ, v) ≤ GL(x, µ, v).

This completes the proof.

4 Conclusions

In this paper, we mainly study semi-prequasi-invex type multiobjective optimization problem with
inequality constraints and generalized nonlinear fractional programming. We first discuss two alternative
theorems and an optimality necessary condition for multiobjective optimization problem. Then, we
establish a strong duality theorem and a saddle point theorem for generalized nonlinear fractional
programming. Our results improve and generalize the corresponding ones in the literature.

An interesting topic for our future research is to investigate more weaker assumptions to study the
applications of semi-prequasi-invexity in vector optimization.
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