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Abstract Let R = (—o00,00), and let Q@ € C*(R) : R — [0,00) be an even function, which is
an exponent. We deal with the exponential-type weights w(z) = e~ ?® 7 € R. In this paper,
we consider the approximation problem with the weight w(x), and then we give some converse
theorems, and investigate the smoothness of functions. We will also study the connections of the
degree of approximation of a function between different norms. To do them we need to give the
Nikolskii-type inequalities.
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1 Introduction and Theorems

Let R = (—o0,0), and let @ € CY(R) : R — [0,00) be an even function. We consider the weights
w(z) = exp(—Q(z)) satisfying [~ 2"w?(z)dz < oo for all n =0,1,2,.. ..

Mhaskar [1] investigates the smoothness of functions, and gives some converse theorems. If f : R — R
is measurable, we define

(SZ 1 fw(t)|Pdt) /P, if 0 < p < o0,
||fw||Lp(]R =
Supte]R If(t)w( )i if p = oo,
where if p = oo, we suppose that f is continuous on R, and lim,|. w(x)f(x) = 0, then we write
wf € Co(R). The class of all functions f for which [|wf||.,®) < co will be denoted by Ly, .,(R), with
the usual understanding that two functions are identified if they are equal almost everywhere. For
feLy,wR) (1<p< o) the degree of weighted polynomial approximation is defined by

Ep,n(’w;f) = P1é17£ ”w(f - P)lle(R)7

where P,, denotes the class of all polynomials P, with degree < n. Let Q(z) = logw(z)~! be an even
and convex function on R, and let @ be continuously differentiable on (0, 00). Furthermore, there are
constants ¢; and ¢y such that

zQ'(x)
Q(x)

for all z € (0,00). Then we say that w = exp(—Q(z)) is a Freud weight. We define ¢, by ¢.Q'(¢.) = =
For f € C*(R) Mhaskar [1] gives a direct theorem as follows:

0<er < < g <0

Epon(w; f) < O(12) K, (£095 22).

Here K, ,(f;9), d > 0 is the K-functional which is defined by

Ky p(f3;0) = nf{[[w(f = g)llz, @) + 8 Iwg L, @},

where the infimum is over all function g having an absolutely continuous (r — 1)-st order derivatives and
wg™ e L,(R). Furthermore, he also gives the following the inverse theorem.
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Mhaskar’s Theorem ([1]). Let Q" be increasing on (0, 00), let s > 0 be an integer, and let 1 < p, ¢ < oo.
(i) Let p< g, f € Lguw(R). If

11 L
Zq;{ T nST Eq,n(w;f) < 00,
n=1
then f is an s-times iterated integral of a function f(*) € L, ,(R), and for the integer n > s,
-5 S Eq,k:n(w; f)

[ee) 11
Epn-s(wi f) e qf, " (kn)' =E28 ==,
k=1

(ii) Let ¢ < p, and let f € Ly, (R). If

(ifi) Let f € Lg.o(R). If

then f is an s-times iterated integral of a function f(*) € L, »(R), and for the integer n > s,

oo

Epns(w; [) <D (

k=1

kl 1—%|—s Eq,kn(W; f)

I Zakn AT )

For a long time such problems have been studied, for example, we find some results in [2]. In recently
years we can find [3,4]).

In this paper, we will give some analogies of Mhaskar’s results with the Freud weights, and extend to
the results with Erdos-type weights. We give some converse theorems, and investigate the smoothness
of functions. We will also study the connections of the degrees of approximation of a function between
different norms. To prove them we will follow Mhaskar’s methods.

In Section 2 we give theorems and some preliminaries. In Section 3 we write some lemmas, and prove
theorems. In Section 4 we prove Corollaries 2.10 and 2.11.

Throughout this paper C, Cy, Cs, ... denote positive constants independent of n, x,t or polynomials
P(z). The same symbol does not necessarily denote the same constant in different occurrences. Let P,, be
the class of all polynomials with degree n at most.

2 Theorems and Preliminaries

First we start the following definition from [5]. We say that f: R — [0, 00) is quasi-increasing if there
exists C' > 0 such that f(z) < Cf(y),0 <z <y.

Definition 2.1. We define w = exp(—Q) € F(C?+) as follows: Let Q : R — [0,00) be a continuous
even function, and satisfy the following properties:

(a) Q'(x) is continuous in R, with Q(0) = 0.

(b) Q" (x) exists and is positive in R\{0}.

(¢) lim Q(x) = occ.

Tr— 00

JAAM Copyright © 2018 Isaac Scientific Publishing



Journal of Advances in Applied Mathematics, Vol. 3, No. 1, January 2018 3

(d) The function

is quasi-increasing in (0, c0), with
T(x) > A>1, ze€R\{0}.

(e) There exists C; > 0 such that

Q" (x) Q' ()|
<C , a.e. x € R\{0},
@@l = Q) MO
and there also exists a compact subinterval J(3 0) of R, and Cy > 0 such that
Q" (x) Q' ()]
> C , a.e.x €R\J
QI ~ QW) '

Example 2.2. (i) If T'(z) is bounded, then we call the weight w = exp(—Q) the Freud-type weight. The
following example is the Freud-type weight.

w(z) = exp(—|z[7), v>1.
If T'(x) is unbounded, then we call the weight w = exp(—@Q) the Erdés-type weight. The following example
give the Erdos-type weight w = exp(—Q).
(i) ([5,6]). Fory > 1, 1 =1,2,3, ...

Q(x) = Quiy () = expy(|2]7) — exp, (0),
where
exp; () = exp(exp(exp...expx)...) (I-times).
More generally, we define for y +u > 1, v >0, v > 0and [ > 1,
Quiy.u(@) = [a]*(expy(|2]7) — 7" exp (0)),

where v* = 0 if v = 0, otherwise v* = 1. We note that Q.0 gives a Freud-type weight.

(iii) We define Q- (z) := (1 + |z[)l*I" —1, v > 1.
We need the following assumption:

Assumption 2.3. Let w(z) = exp(—Q(z)) € F(C?+), and let 7 > 1 be an integer. Let the exponent @
satisfy that for |#| > K > 0 large enough, Q € C("*2)(R\{0}) and

QU+ () QU (z) Q" (x) Q' ()
() SV gow |~ g~ gw b W
and for some 0 < A < (r +2)/(r + 1), C >0, then for |z| > K > 0 large enough,
Q' ()]
oap <€ 2)

Then we write w € Fy(CTT2+).

Copyright © 2018 Isaac Scientific Publishing JAAM



4 Journal of Advances in Applied Mathematics, Vol. 3, No. 1, January 2018

Remark 2.4. (i) All in Example 2.2 satisfy all conditions of Assumption 2.3 for all v = 1,2,3,... or
vz

(ii) More generally, we can give the examples of weights w € F)(C""2+). Let w = exp(—Q) € F(C?*+),
and let us define

L QW QW Q) Q)
pe I O Q) T R W Q)

If uy = p_, then we say that the weight w is regular. If Q € C("*2)(R\{0}) satisfies (1), then for the
regular weights we have w = exp(—Q) € F\(C™"2+), that is, (2) holds (see [7]).
We need the Mhaskar-Rakhmanov-Saff numbers a,;

2 [t a;u@’ (azu)
= /0 7(1_u2)1/2du,$>0.

/

/

The following theorems are important.

Theorem 2.5 ([7]). Let 0 < A < 3/2 and o € R. Then for w = exp(—Q) € Fx(C3+), we can construct
a new weight w, € F(C?+) such that

T(z)%w(z) ~ wa(x), x€R,
and the following holds
an(We) ~ ap = an(w), n=1,2,,3....
In fact, there exists ¢ > 1 such that

Unje(Wa) < an = an(w) < aen(wa), n=1,2,3,..,

and
Ty, () ~T(x) =Ty(x) z R

Moreover, for aq, as, ..., o, k < m we obtain an iterated weight wq, as,....a%-

Theorem 2.6 (cf. [7]). Let the weight w = exp(—Q) € FA(C™™2+) (0 < A < (r+2)/(r 4+ 1)). Then for
ar €R, k=1,2,...,r, we can construct an iterated weight w(a, .., (2) € F(C?+) such that

T(l‘)alerJrakw(x) ~ T('r)akw(ahm;ak—l:k?—l)(x) ~ w(ahm,aMk) (I‘),
where w(q,,0)(z) = w(x). Then we also have
W(ay,...,ap:k) (LE) ~ w((y1+4..+ak;1)(x)~

Proof. Using Theorem 2.5, we can inductively construct new weights w; = exp(—Q;) € Fa(C"T27%) for
w = exp(—Q) € FA(C"2+) as follows:

Way 4. 4aps1) (T) ~ T(x) o Forw(z) ~ T(2)™ Wiay,....a5_1:k—1)(T)
~ W(ay,...,a;k) (.13)
We omit the details (see [7]). #
Remark 2.7. When a = a1 = as = ... = ag, we Write W(a;k) ~ Wias1) = Wka- If a # (3, then

TPwy ~ (wa)s € F(C%4).
Now, we extend Mhaskar’s theorem as follows.
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Theorem 2.8. Let s > 1 be an integer. We assume a,, < Cnl/? if T'(z) is bounded.
(i) Let w = exp(—Q) € FA(C*T2+4) (0 < A < (s+2)/(s+1)),and let 1 < p < g < 00. Let VT *f € Ly (R).
If

_1_g s
Tk B (TR w; f) < oo, (3)

El ST

o0
>
k=1
then f is an s-times iterated integral of functaion f(*) € L, ,(R), and for the integer n > s,

s =11, s Eqkn Tzw;
Epn_s(w; f&) < C’Za,ﬁn (kn)* w. (4)
k=1

(i) Let w = exp(—Q) € FA(C™5+) (0 < A < (5+3)/(5 +2)), 1 < p,q < 00, and let VT 14311
Ly.w(R). If

kji_1 E,k(T(SH%_%D/Qw;f)
(;)H >l+s~a - < o0, (5)

NE

o

k

1

then f is an s-times iterated integral of a function f(*) € L, ,,(R), and for the integer n > s,

>k E, i T+ T =5D/2y,.
Byueslus f9) < 03 (2 Bt wif) (©)
Qfn, k
k=1
Remark 2.9. (i) For a Freud-type weight we have a,, ~ ¢,. In fact, from [1] and % = %

conclude this result. Therefore, we may consider that Theorem 2.8 and Mhaskar’s Theorem is equivalent.
(ii) If T'(x) is unbounded, then for every n > 0 we have a,, < C(n)n", where C(n) is a constant depending
only on 7 (see [8]).

Corollary 2.10. (i) Let s > 1 be an integer, and let 1 < p < 00. Let w = exp(—Q) € FA(C*+) (0 <
A< (s+2)/(s+1)). Let VT "f € Ly.(R), and 8 > s. If

s Ay
Epn(w(30) ) ~ Bpn(VT “w; ) = O(1)7, (7)
then f is an s-times iterated integral of a function f*) € L, ,,(R), and

an

Epnlw: ) = O(22)7=+,

(ii) Let s > 1 be an integer, and let 1 < p < ¢ < oo. Let w = exp(—Q) € Fa(CT34) (0 < X <
(s+3)/(s+2). Weput a:=1/p—1/q. If VT 8+af € Ly w(R), and if for some § > s + «,

Eyn({ws } (3103 ) ~ (T 2ws £) = O(S2), (8)

then f is an s-times iterated integral of a function f(*) € L, ,(R), and
CF()y = (I B-s—a
Ep,n(w’ f ) - O( n ) :
Let v > 1, and let [ > 1 be an integer. Then we set

Wiy () 1= exp(=Qi» (7)), Qi (x) = expy(|2[”) — exp;(0).

The following theorem is given for a specific weight wy .
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Corollary 2.11. Let s be a nonnegative integer, and let 1 < p < ¢ < oo. Let ﬁsf € Lgw,,,
ﬁ>%—%+s, and let & be a fixed as 0 < § < 5 — s. If we suppose

Egn({win}5: ) ~ Ban (VT *wry: f) = 0((L8L) g5y ©)

n

then f is an s-times iterated integral of a function f(*) € L, ,(R), and for the integer n > s, wi., f € Ly(R),

O(n’5+5+5), forl=1and 8 —s— % + % > ;

10
O(n_ﬂ+s(logln)%(’g_s_%+%)), otherwise. (10)

Ep,n(wlw?f(S)) - {

3 Proof of Theorems
To prove theorems we need some fundamental lemmas.

Lemma 3.1. (i) [5] For a fixed L > 0 and uniformly for ¢ > 0,
art ~ G, T(aLt) ~ T(at).

(ii) [5] For ¢ > 0,

(iii) Let A > 1 be defined in Definition 2.1 (d). Then we have

a, < Cnt/A,

Proof. We show (iii). From the definition of T'(z) we see
2" < CQ().
Hence, noting (ii) in this lemma, we have
a

A < CQ(ayn) < Cn.
Therefore, we conclude (iii).#
Lemma 3.2 [7]. Let w € F5(C3+) (0 < A < 3/2). Let 1 < p < oo, and let P € P,,. Then we have
w n
—P < C—||wP .
Iy < ColhPlz, o
Moreover,

n
lwP'|l, @ < CLTH\/TWPHLP(R)-

Therefore, if w € F\(C"™?+) (0 <A< (r+2)/(r+1)), 1 <j <r, where 7 > 1 is an integer,

lwPD| &) < C(— )V |(VT)wP||1,®), j=1,2,3,..r

n
a"I'L

We consider the connections of degree of approximation of a function between different norms. Levin
and Lubinsky obtained a Nikolskii-type inequality as follows.

JAAM Copyright © 2018 Isaac Scientific Publishing
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Theorem 3.3 [5]. Let w = exp(—Q(x)) € F(C?+), and let P € P,,. When 0 < p < ¢ < 0o, we have

11
lwP||L,® < Cap |wP|L,®)),
and when 0 < ¢ < p < 0o, we have

ny/T(an) . 1
) T JwP| )

[wP|z,® < C(
We can obtain an analogy of Theorem 3.3 for the weight w = exp(—Q(z)) € Fa(C3+) (0 < A < 3/2).

Theorem 3.4. Let w = exp(—Q) € FA(C3+) (0 < A < 3/2), and let P € P,,. For 0 < p < ¢ < o0, we
have

1_1
[wP|r,® < Car *|wP|L,®), (11)
and for 1 < g < p < oo, we have
n . i1_1 1_1
lwPllz,@ < C(——) P|(VT) 1P wP| - (12)

To prove Theorem 3.4 we need some lemmas. We define

||

Qy a2y < .
‘Pu(x) — u /1—%—&-75“’ |SC| X Au; 50 = {uT(au)}%/B, u>0.
Pulaw), ay < |zl,
Lemma 3.5 [7]. We have
Qn, 1 1
) x
VAT (z)

We define L, Christoffel functions A, ,(w;x) by

o

Anp(w;z) = Pié17£ |Pw|P(¢)dt/|P(x)|P.

Lemma 3.6 [5]. Let w € F(C?+). Let 0 < p < oo.
(i) Let L > 0. Then uniformly for n > 1 and |z| < a,(1 + L, ), we have

Anp(W; ) ~ p(z)w? (z).
(ii) Moreover, uniformly for n > 1 and z € R,
on(T)wP(x) < CAy p(w; ).
Now the proof of Theorem 3.4 is simple.

Proof of Theorem 3.4. By Theorem 2.5 we can replace (\/T)%_%w with wg /o € F(C?*+), where o :=
The inequality (11) follows from the first inequality of Theorem 3.3. We show (12). Let 1 < ¢ < p.

D=

1
q

ol = [ w@P@ra= [ pepop-ewpora = [0St opora

wP|P

|
< I 1L iy I3 P, sy (13)
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because of apg/(p — ¢) = 1. Here we use L, Christoffel functions A, ,(w; ), and by Lemmas 3.5 and 3.6
we have

[w@®POP _ - wt)?
0 O\/jT/\ (w; t)[|wP||? (®)
1 _ » n »
< Ot O PI, oy < O I0PI, (14)

Substituting this estimate (14) into (13), we have

WPl @) < CLE P, ) 7 [wg P,
n . p-a
ZC(a) *wP| wllws PlT )
So

n  rp—a
[Pl g < OG- oy Pl g,
that is,

n . 1_1
|lwP|L,®) < C(;)q ‘“||w”P||L (R)>

n

consequently, we have the result (12). #
The next lemma is useful.

Lemma 3.7. Let {b;}72, be an increasing sequence of positive numbers, and {c;}?2, be a decreasing
sequence of positive numbers. Let j > 1 be an integer. Then we have

j—1 27 j—1
Z kaQkCQkJrl < Zblcl < blCl + Z ka2k+1 Cok .
k=0 i=1 k=0
Proof.
Shesbary 3
k=1i=2k— 1+1
j _
> bicg + Z 2k_1b2k—1C2k = Z 2kb2k02k+1,
k=1 =
and

Zbcl—blcl—i—z Z

k=1i=2k—-141

j—1
< bieg + Z oF 1b2k02k 1 =bicg + Z oF bok+1Cok . F
k=1 k=0

In the rest of the paper we write f(*) = g if f is an s-times iterated integral of a function ¢ such that
wg € L,y(R).

JAAM Copyright © 2018 Isaac Scientific Publishing
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Proof of Theorem 2.8. Let p < q. We write a := 1/p — 1/q. Let n > s be fixed, and let T 2w ~ w /2 €

F(C?+).
(i) We can find polynomials P; € Paj,, such that for j =0,1,2,...,
lw(f = P)llr,@) < llwo(f = P)llc,® 2Eq,2jn(w(%;s);f)'
Since we have lim]’_)OOEq12jn(w(%;s); f) =0, for with R; :== Pj41 — Pj, 7=0,1,2, ..., we see
f=F+ Z R;
j=0
in the sense of
m—1
i o = (Pot 32 Rl = Jim 05— Pl =0
=

Using the Nikolskii-type inequality (11) and the Markov-Bernstein-type inequality (Lemma 3.2), we get

P N z,m + Y 0R @ < CIL+ Y agmllwR|L,m)]
j=0 j=0

+Za21+1
+Za21+1

+Zazm ) Byain(w(0; (15)

n

) lwzis) Billz,m)]

29+1
—— )llws,e)(Pja1r = [+ = Pz,

2it1n

Here by (3) we will see that the last sum is finite. Then, there is a function f(*) € L, ,(R) such that
) _ p©) L N gl
O =P+ R; (16)
=0

in the sense of L, ,,(R) convergence. Now, we show that the last sum (15) is finite. We use the first
inequality in Lemma 3.7 with

L ,in(w 1. 7f)
b =as *(in)°, ¢ = # 1=1,2,3,....

wm 7

Then, in (15),

EOO a 2jn s s E a—s — s
a2.7’n(a2‘ ) Eq,2jn(w(%;s); f 2 + a2] 1n 2j ln) Eq,QJn(w(%;s); f)
— in

> e (W6
_ 25+1Z2J71b2j—1C2j < 28+2Zbic 28+2Za M
: ; J
=1 =1
So,
Epn—s(w; f©) < Jlu(f© — P“’)HLp(R
- s q,kn( ;s)?f)
< wRY |, @ C’Za T’ (17)
§=0
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that is, (17) means (4). Now we will show

Za W < 0. (18)

We see
Eq kn(w(1 is)9 f)

i a—s Eq kn( s 1
Z A, (k Z nakn k"l’bz
k=1

1:s f) Eq,kn(w(l-s); f)
=na;, °n® Zant (g ) + Z nayp, *(kn)® ———2——.
n — kn

Let 0 < j < [(n+1)/2] ([z] is the largest integer < ). Since ay\ % (n +j)° ~ a;~}(n — j)° uniformly for
0<j<[(n+1)/2] (see Lemma 3.1 (i)), we have

EByn(wy i f) Eqn—j(w(3,0); f)

nag_sné—q (z <2 E api(n+j)° 1 ;_(;’)

[(n+1)/2] E (w . f)

q,n—j ( ;8)7
<C g an_; (n—j)° p—

“ (w163 f)
<C aq—sg‘sq”%. 19

P ; (19)

Similarly, for k > 2 we also have

E Jn (Wil af
naz‘gs(k‘n)s—q (lm(: ) )

Eq,(k 1)n+]( (2,8) f)
OZ% D (B = Dn 4§ ==

So we have
> E ,kn w l's 1f
R (,W(;* L
. gEq,(kfl)nij(w(l;s);f)
CZ{Z a(k 1)n+] 1)n +j) (k _ 1)n +2j }
k=2 j=1
Eq,n+j(w(l;s); f)
C’Zanﬂ n+j n+; . (20)

By (19), (20) and the assumption (3) we conclude (18) as follows:

o

oo

a—s q k:n( ( 5) f —5 :5—
Znakn (kn) — CZG J 1Eq,j(w(%;s)§f) < oo
k=1 j=1

that is, we see that f is an s-times iterated integral of a function f(*) almost everywhere. Consequently,
noting w5 ~ T3w, we have (4).
(ii) Let 8 =1/¢ —1/p > 0. We have (6) as above. In fact, let n > s be fixed. We can find polynomials
P; € Py, such that for j =0,1,2, ...,

lw(f = Pi)llz,@ < IH{ws e (f = Pillz,@

X 2Eq,27n({wg }(%,9)7 f)

JAAM Copyright © 2018 Isaac Scientific Publishing
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From lim; o Eq 2in({ws } (1,5 f) = 0, we have
B1(%;

f:P0+ZRj, where R; := Pj1 — P;,
=0

in the sense of Lg (, , b, )(R)—convergence, and
72
||{’UJ[€} R ”L 4Ep,2jn({wg}(%;s);f)7 j:O71727"' .

Now, by Nikolskii-type inequality (12) and Lemma 3.2 we have for some constant C' > 0,
o

oo
[P |, + D [wBS |1, @) < C+ 2:

j=0 —o %2n
Ol + Z

27 n
2in s
1 +Z lBJr Eq,ZJn({wﬂ}(l ;8)7 f)]

ﬁ||{wf*} 1 )R ||L (R)

PIHws b g0 BillL,m@)]

2

A2j n a2 In

=0 azm
<C[1+(%)ﬂ+s Egn({w 2;3_}<2,s) i) 25+s+1;2] I 62@ :)5+ q,2jn({u;§}(§;s)§f)}.
Using Lemma 3.7 with b; 1 = (2-2)%+ ¢; = Pungdg o) o obtain
1+}; ;Z Eqen({w E}(é;S);f)]- o)

Furthermore,

[(n+1)/2] 4y, Fa
A[(n+1)/2]

n
Foee  (—)PFE

2%
Eqn({ws 103 f) 1)/2
q 2 (359) (by [(n+1)/2] ~ (see Lemma 3.1 (i))
n A(n+1)/2]  Gn

(nt1)/2/({ws } (1565 ) INGESVE RSN Eqmpar2({ws } (16 f)
[(n+1)/2] A[(n+1)/2]+1 [(n+1)/2]+1

E‘I,n({wg }(%,s)v f)

n, n
>0—(— B+s
2(an)

> O Eyal{wg by )

Similarly, for k > 2
(k—Dn+1 4. Eao-vn{wshye f)

Q(k—1)n+1 (k—1n+1
(]{1 — 1)7?, + 2 Bts Eq,(kfl)n+2({w§}(%;s)§ f)
A(k—1)n+2 (k—1)n+1

+ +(kl)ﬁ+qEQakn({w§}(%,S)1f)

an n

ak:n kn

S C( kn )/3"!‘3 E‘]7kn<{w§}(%,e)7 f)
z 2 .

Qfn

Copyright © 2018 Isaac Scientific Publishing JAAM
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Therefore, by the assumption (5),

= kn gy Parm{ws i) f)
ClL+> (—)7* 22
[ k,1(‘”m) A ]

o Ean({ws) s )

an n

] < o0.

n=1

So, from (21) we see that f is an s-times iterated integral of a function f(*) almost everywhere. Moreover,
from the above estimation (21) we have

oo

Epns(w; £) < Jw(f) — )] <Z||wR ML, @)
CZ kn 5+5Eqkn({ 8113 f)
be1 CLk:n k

Therefore, noting {ws }(1.5) ~ TEHG=2)/2y, we have (6).
8 1(%;
Next, we let p < ¢, and put « = 1/p — 1/¢. If T(x) is unbounded, then from Remark 1.9 we find that
for any fixed d > 0 there exist C'(§) > 0 and N(d) > 0 such that

al < C(&)n for n > N(9). (22)

If T(x) is bounded, then from our assumption we have (22) with d = 2. Therefore, the condition of (5)
means (3), because

2c
_ a n n
ah ot = ()< O )T

Therefore, applying (i) above with the weight w, f is an s-times iterated integral of a function f(*) €
L, ,(R), and we have for the integer n > s,

E . (1)}
Epn swfs) OZCL @k ({wk}2 f)

Qlen, k ’

N n(\Wg l'sy
<CZ(]L”)a+s 2.k ({ 2} (1005 )
k=1

that is, noting {wg }(1,5) ~ TG+G=3)/2, we have the result.#

4 Proof of Corollaries 2.10 and 2.11

In this section we prove Corollary 2.10 and Corollary 2.11.

Proof of Corollary 2.10. (i) We use Theorem 2.8 (i) with p = g. We assume (7). Then, by Lemma 3.1 (iii)
we see

> K By 1) € Y () < 3y

n=1 k=1 k=1

i% )<oo,

k=1

JAAM Copyright © 2018 Isaac Scientific Publishing
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that is, (3) is satisfied. Therefore, f is an s-times iterated integral of a function f(*) € L, ,(R), and then
we have (4), that is,

o0

kn _ Eprn(wise; f n
Epn s(wf()<CZ n M Czak

=1 a)kn

O/ at" yp—s dth’/ (%)ﬁf‘gadu:C’/ w P LaP s du.

Now, by [5] we see that

(23)

Hence,

o0
A ::/ u Pl du =
n

1
T(an)

o0
[us—ﬁaﬁ—ﬂff—/ wPal ", dul
n

A
T(an).

oo
<o(fmyss g / w P laB =y < O (2P 4
n n n

Therefore, we have
Bpnmsuw; ) < CA< C(2)

Here we replace n — s with n, then we have the result because of a,s/(n + s) ~ a,/n.
(ii) Let 1 < p,q < 0o. We use Theorem 2.8 (ii). Let us assume (8). Then

i Eqn({wia }1,05 f) S 1
T ysopfa) I e M ystlal(Gnys 1
> U oy ity

<CZ (Qnyp-s=fal L <CZ Y= BB -s=lal) < o

so, (5) is satisfied. Therefore, f is an s-times iterated integral of a function f(*) € L, ., (R), and from (7)
we have

( f() <CZ kn s+|oz\ qkn({w‘%}(%; CZ ak" B s5— \oz|1
k

a
=1 kn

Here, as the proof of (i), we have
Epo(w; f9) = (9(‘%)6*87\04. 4
To prove Corollary 2.11 we need a lemma;

Lemma 4.1 ([5]). For the weight w.,(z) = exp;(|z|?) — exp;(0), 7 > 1, and [ > 1 is an integer. We
know

an = (log;(n+1))7 (1 +0(1)),n=1,2,3, ...,
and for some ¢ and C' > 0,

T(ay) ~ log(n +1) ifi=1;
> Cllogy(n + 1) }log,_y(n+ 1)° if 132,

where logy z = 1.
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Proof of Corollary 2.11. We use Theorem 2.8 (i). As we see in the proof of Corollary 2.10 (i), we have (3).
Therefore, by (4), (9) and (23),

Ozakn q Eq,kn(T%wl;'ﬁf)

Epn s wl,'yaf k

<eS byl <o / ity
-1 B—stl_1 ﬂ—5+7_l ) B NN
<07t5—ﬁat P q|m+# 5= Bq /dt
B—s " B—s ;
posri—d

11
1 Bosti 1 B—s+—o [ a
<C——np°F P #/ p=B1%
< B—sn an, + 5 g T

We will estimate the last term in (24). Then we use a; ~ (log; t)'/7. By Lemma 3.4, if | > 1, then we have

(24)

00 ﬂ*S*F%*% (B—S‘f‘l—l)/"{ o
/ At < / a0 dt < C / FAld < Cntf (25)
n T(a) n C{log; t}(log;_; t)° n

by (log; t)” < Clog;_;t for v € R and ¢ large enough. Let [ = 1. If 8 — s+ % — % < 7, then we also see
p—st+E—1
oo a P q oo
P di g C/ 57 1dt < ot P, 26
/ T(a) . (20

Ifil=1and g —s+ % — % > «, then we fix any §; 0 < § < 8 — s. Then, noting Lemma 4.1, we have

0o B—s+i—1% 00
5B~ 19¢ dt < C/ ts—ﬁ+6—1dt <C s—B+d 9
/ T(a) 8 " 27
Then, from (25)-(27), we have
B—s+i-1

Ep,n(wl;'y§ f(S)) < Cns_ﬁan
_ O(n=P+s+9) where 0 <d<pB—s, forl=1 andﬁ—s+%—%>'y;
] O(n~P+3(log, n)%(ﬁ787%+%)), otherwise,

that is, we conclude the result (10).#
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