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Abstract. A Fuzzy Linear Programming problem differs from an ordinary one to the fact that the 
coefficients of its objective function and / or the technological coefficients and constants of its 
constraints are fuzzy instead of real numbers. In this work a new method is developed for solving such 
kind of problems by ranking the fuzzy numbers involved and by solving the obtained in this way 
ordinary Linear Programming problem with the standard theory. The values of the decision variables 
may then be converted to fuzzy numbers in order to facilitate a fuzzy expression of the problem’s 
optimal solution, but this must be strictly checked to avoid non-creditable  expressions. Examples 
involving triangular and trapezoidal fuzzy numbers are also presented in the paper illustrating the 
applicability of our method to real-life applications. 
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1   Introduction 

It is well known that Linear Programming (LP) is a technique for the optimization (maximization or 
minimization) of a linear objective function subject to linear equality and inequality constraints. The 
feasible region of a LP problem is a convex polytope, which is a generalization of the three-dimensional 
polyhedron in the n-dimensional real space Rn, where n is an integer, n ≥  2.  

An LP algorithm determines a point of the LP polytope, where the objective function takes its optimal 
value, if such a point exists. In 1947 George B. Dantzic invented the SIMPLEX algorithm [1] that for the 
first time efficiently tackled the LP problem in most cases. Further, in 1948 Dantzic, adopting a conjecture 
of John von Neuman, who worked on an equivalent problem in Game Theory, provided a formal proof of 
the theory of Duality [2]. According to the above theory every LP problem has a dual problem the optimal 
solution of which, if there exists, provides an optimal solution of the original problem. For general facts 
about the SIMPLEX algorithm we refer to Chapters 3 and 4 of [3]. 

LP, apart from mathematics, is widely used nowadays in business and economics, in several engineering 
problems, etc. Many practical problems of Operations Research can be expressed as LP problems. 
However, in large and complex systems, like the socio-economic, the biological ones, etc. ., it is often very 
difficult to solve the LP problems with the standard theory satisfactorily, since the necessary data cannot 
be easily determined precisely and therefore estimates of them are used in practice. The reason for this is 
that such kind of systems usually involves many different and constantly changing factors, the 
relationships among which are indeterminate, making their operation mechanisms not clear. In order to 
obtain good results in such cases one may apply either techniques of fuzzy logic (Fuzzy LP, e.g. see [4-6], 
etc.) or of the grey systems theory (Grey LP, e.g. see [7, 8], etc.).  

In this work we develop a new technique for solving fuzzy LP problems. The rest of the paper is 
formulated as follows: In the second Section the background information is recalled about Fuzzy Numbers 
(FNs) which is necessary for the understanding of the paper. In the third Section our method for solving 
fuzzy LP problems is developed and examples are presented illustrating it. Finally, the fourth and last 
Section contains our conclusion and some suggestions for future research on the subject. 
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2   Fuzzy Numbers 

2.1   Introductory Concepts 

FL, due to its nature of characterizing the ambiguous real life situations with multiple values, offers rich 
resources for handling problems with approximate data. This multiple-valued logic, being an extension / 
complement of the classical bi-valued Logic of Aristotle, is based on the notion of Fuzzy Set (FS), 
introduced by Zadeh in 1965 [9] as follows: 

Definition 1: A FS on the universal set U of the discourse (or a fuzzy subset of U) is a set of ordered 
pairs of the form Α = {(x, mΑ(x)): x∈U}, defined in terms of a membership function mΑ : U →  [0,1] that 
assigns to each element of U a real value from the interval [0,1].  

The value mΑ(x) is called the membership degree of x in A. The greater is mΑ(x), the better x satisfies 
the characteristic property of A. The choice of the membership function is not unique depending on the 
user’s subjective goals and it is usually based on statistical or empirical observations. However, a 
necessary condition for a FS to provide a reliable description of the corresponding real situation is that its 
membership function’s definition satisfies the common sense. Note that, for reasons of simplicity, many 
authors identify a FS with its membership function. 

A crisp subset A of U can be considered as a FS on U with mΑ(x) = 1, if x ∈A and mΑ(x) = 0, if x ∉A. 
In this way most properties and operations of crisp sets can be extended to corresponding properties and 
operations of FS. For general facts on FS we refer to the book [10]. 

FNs play an important role in fuzzy mathematics analogous to the role played by the ordinary numbers 
in crisp mathematics. The general definition of a FN is the following:  

Definition 2: An FN is an FS A on the set R of real numbers with membership function mA: R → [0, 
1], such that: 
• A is normal, i.e. there exists x in R such that mA(x) = 1. 
• A is convex, i.e. all its a-cuts Aa = {x∈U: mA (x) ≥  a}, with a in [0, 1], are closed real intervals. 
• Its membership function y = mA (x) is a piecewise continuous function. 

Note that one can define with two different, but equivalent to each other methods, the basic arithmetic 
operations on FNs. as we do for the ordinary numbers [11]. However, since both methods involve laborious 
calculations in the general case, in practical applications it is usually preferred to utilize special forms of 
FNs, for which these operations can be performed easily.  

For general facts on FNs we refer to the book [11]. 

2.2   Triangular and Trapezoidal Fuzzy Numbers 

In this work we are going to use the two simpler forms of FNs, the Triangular FNs (TFNs) and the 
Trapezoidal FNs (TpFNs).  

Definition 3: Let α, b and c be real numbers with α < b < c. Then the TFN A = (α, b, c) is an FN 
with membership function: 
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The membership function’s graph of the TFN (α, b, c) and its Centre of Gravity (COG) are presented in 
Fig. 1. 

128 Journal of Advances in Applied Mathematics, Vol. 3, No. 4, October 2018

JAAM Copyright © 2018 Isaac Scientific Publishing



Y

B(b,1)

O

G
X

ΜA(α,0)

1

C(c,0)

N

 
Figure 1. Graph and COG of the TFN (α, b, c)  

It can be shown [11] that the two general methods for performing operations on FNs lead to the 
following simple rules for the addition and subtraction of TFNs:

 Proposition 1: Let A = (a1, a2, a3) and B = (b1, b2, b3) be two TFNs. Then: 
• The sum of them is the TFN A + B = (a1+b1, a2+b2, a3+b3). 
• The difference of them is the TFN A - B = (a1-b3, a2-b2, a3-b1).  

On the contrary, the product A . B and the quotient A : B are FNs which are not TFNs, apart from 
some special cases. For example, if all the entries of A and B are positive numbers, then one can 
approximately write that A . B = (a1b1, a2b2, a3b3) and A : B = (a1/b3, a2/b2, a3/b1). 

Definition 4: Let α < b ≤  c < d be real numbers. Then the TpFN (α, b, c, d) is a FN with 
membership function: 
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The graph of the TpFN (a, b, c, d) and the COGs of its parts (two triangles and a rectangle) are shown 
in Fig. 2 

 
Figure 2. Graph of the TpFN (α, b, c, d) and the COGs of its parts 

It is easy to observe that the TFN (a, b, d) is a special case of the TpFN (a, b, c, d) with c=b; in other 
words the TpFNs are generalizations of the TFNs. 

Similarly with the TFNs it can be shown [11] that, if A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4) are given 
TpFNs, then  
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A + B = (a1+b1, a2+b2, a3+b3, a4+b4) 
and. 

A - B = (a1-b4, a2-b3, a3-b2, a3-b4),  

whereas A . B and A : B are not TpFNs in general. 
Remark 1: The TFNs and the TpFNs are special cases of the LR – FNs of Dubois and Prade [12]. 

Generalizing the definitions of TFNs and TpFNs one can define n-agonal FNs of the form (a1, a2,… , an) for 
any integer n, n ≥ 3 (e.g. see Section 2 of [13] for the definition of the hexagonal FNs).  

For the needs of the present work we also introduce the following definition: 0 
Definition 5: The Degree of Fuzziness (DoF) of the n-agonal FN A = (a1, … , an) is defined to be the 

real number D = an – a1. We write then DoF (A) = D. 

2.3   Defuzzification and Ranking of TFNs and TpFNs 

The general approach for solving a problem using principles of FL involves the following steps: 
• Fuzzification of the problem’s data by representing them with properly defined FSs. 
• Evaluation of the fuzzy data by applying principles and methods of FL in order to find the problem’s 

solution in the form of a unique FS. 
• Defuzzification of the problem’s solution in order to “translate” it into the natural language for applying 

it to the original real-life problem. 
The most popular defuzzification method is perhaps the Centre of Gravity (COG) technique, according 

to which the problem’s fuzzy outcomes are represented by the coordinates of the COG of the 
membership’s function graph of the FS representing its solution [14]. The following two propositions 
concern the defuzzification of a given TFN and TpFN respectively with the COG technique: 

Proposition 2: The coordinates (X, Y) of the COG of the graph of the TFN (α, b, c) are calculated by 
the formulas 

 1,
3 3

a b cX Y+ +
= =   

Proof: The graph of the TFN (α, b, c) is the triangle ABC of Figure 1, with A (α, 0), B (b, 1) and C (c, 

0). Then, the COG, say G, of ABC is the intersection point of its medians AN and BM, where N (
2

b c+ , 

1
2

) and M (
2

a c+ , 0). Therefore, it is a routine process of Analytic Geometry to form the equations of the 

straight lines defined by the line segments AN and BM and then to determine the coordinates of G by 
solving the linear system of those two equations. 

Proposition 3: Consider the graph of the TpFN (α, b, c, d) (Figure 2). Let G1 and G2 be the COGs of 
the rectangular triangles AEB and CFD and let G3 be the COG of the rectangle BEFC respectively. Then 
G1G2G3 is always a triangle, whose COG has coordinates 
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Proof: By Proposition 2 one finds that G1 (
2 1,

3 3
a b+ ) and G2 (

2 1,
3 3

d c+ ). Further, it is easy to check 

that the GOG G3 of the rectangle BCFD, being the intersection of its diagonals, has coordinates ( 1,
2 2

b c+ ). 

The y – coordinates of all points of the straight line defined by the line segment G1G2 are equal to 1/3, 
therefore the point G3, having y – coordinate equal to 1/2, does not belong to this line. Hence, by 
Proposition 2, the COG G΄ of the triangle G1G2G3 has coordinates  
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Remark 2: Since the COGs G1, G2 and G3 are the balancing points of the triangles AEB and CFD and of 
the rectangle BEFC respectively, the COG G΄ of the triangle G1G2G3, being the balancing point of the 
triangle formed by those COGs, may be considered instead of the COG G of the trapezoid ABCD as the 
tool for defuzzifying the TpFN (a, b, c, d). An advantage of the choice of G΄ is that the formulas 
calculating the coordinates of it are simpler than those calculating the COG of the trapezoid ABCD 
(Proposition 11, Chapter 7 of [15]). 

An important problem of the fuzzy arithmetic is the ordering of FNs, i.e. the process of determining 
whether a given FN is larger or smaller than another one. This problem can be solved through the 
introduction of a ranking function, say R, which maps each FN on the real line, where a natural order 
exists. Several ranking methods have been proposed until today, like the lexicographic screening [16], the 
use of an area between the Centroid and original points [17], the subinterval average method [13], etc.  

Here, under the light of Propositions 2 and 3 respectively, we define the ranking functions for a TFN 
and a TpFN as follows: 

Definition 6: Let A be a FN. Then:  

i) If A {α, b, c) is a TFN, we define R (A) = 
3

a b c+ + .  

ii) If A {α, b, c, d) is a TpFN, we define R (A) = 2( ) 7( )
18

a d b c+ + + . 

Proposition 4: Let A be a TFN with DoF (A) = D and R(A) = R. Then A can be written in the form  
A = (α, 3R-2α-D, α + D) 

where α is a real number such that  

R - 2D
3

< α < R - D
3

. 

Proof: Let A (α, b, c) be the given TFN, where α, b, c are real numbers such that α<b<c. Then, since 
D(A) = c - α = D, it is c = α + D. Therefore,  

R(A) = 
3

a b c+ + = 2 D
3

a b+ + = R 

 which gives that b = 3R-2α-D.  
Consequently we have that α < 3R-2α-D < α + D. The left side of the last inequality implies that 3α < 

3R-D, or α< R- D
3

. Also its right side implies that -3α < 2D-3R, or α> R- 2D
3

 and this completes the 

proof. 
The corresponding situation is more complicated if A is a TpFN. In this case we have: 
Proposition 5: Let A be a TpFN with DoF (A) = D and R(A) = R. Then A can be written in the form 

A = (α, b, c, α + D), where α, b and c are real numbers such that  

α < b ≤  c < a + D, b + c = 18R 4 2D
7
a− − . 

Proof: Let A (α, b, c, d) be the given TFN, with α, b, c, d real numbers such that a < b ≤  c < d. Since  
D(A) =d - α = D, it is d = α + D. Also, by Definition 6(ii) we have that  

R= 2(2 ) 7( )
18

a D b c+ + +  

wherefrom one gets the expression of b + c in the required form. 

3   A Method of Solving Fuzzy LP Problems 

The general form of a Fuzzy LP problem is the following: 
Maximize (or minimize) the linear expression  

F = A1x1 + A2x2 +….+ Anxn 
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subject to constraints of the form  
xj ≥  0, Ai1x1+ Ai2x2 +…..+ Ainxn ( )≤ ≥  Bi 

where i = 1, 2, …, m , j = 1, 2, … , n and Aj, Aij, Bi are FNs. 
The proposed in this work method for solving a Fuzzy LP problem involves the following steps: 

• Ranking of the FNs Aj, Aij and Bi. 
• Solution of the obtained in the previous step ordinary LP problem with the standard theory. 
• Conversion of the values of the decision variables in the optimal solution to FNs with the desired DoF. 

The last step is not compulsory, but it is useful in problems of vague structure, where a fuzzy expression 
of their solution is often preferable than the crisp one.  

The following examples illustrate the applicability of our method: to real life applications: 
Example 1: A furniture-making factory constructs tables and desks. It has been statistically estimated 

that the construction of a group of tables needs 2 - 3 working hours (w.h.) for assembling, 2.5 - 3.5 w.h. for 
elaboration (plane, etc.) and 0.75 - 1.25 w.h. for polishing. On the other hand, the construction of a group 
of desks needs 0.8 - 1.2, 2 - 4 and 1.5 - 2.5 w.h. for each of the above procedures respectively. According to 
the factory’s existing number of workers, no more than 20 w.h. per day can be spent for the assembling, no 
more than 30 w.h. for the elaboration and no more than 18 w.h. for the polishing of the tables and desks. 
If the profit from the sale of a group of tables is between 2.7 and 3.3 thousand euros and of a group of 
desks between 3.8 and 4.2 thousand euros, 1 find how many groups of tables and desks should be 
constructed daily to maximize the factory’s total profit. Express the problem’s optimal solution with 
TFNs of DoF equal to 1.  

Solution: Let x1 and x2 be the groups of tables and desks to be constructed daily. Then, using TFNs, the 
problem can be mathematically formulated as follows:2  

Maximize F = (2.7, 3, 3.3)x1 + (3.8, 4, 4.2)x2 subject to constraints x1, x2 ≥  0 and 
(2, 2.5, 3)x1 + (0.8, 1, 1.2]x2 ≤  (19, 20, 21) 
(2.5, 3, 3.5)x1 + (2, 3, 4)x2 ≤  (29, 30, 31) 

(0.75, 1, 1.25)x1 + (1.5, 2, 2.5)x2 ≤  (15, 16, 17) 
The ranking of the TFNs involved leads to the following LP maximization problem of the canonical form: 

Maximize f(x1, x2) = 3x1 + 4x2 subject to the constraints x1, x2 ≥  0 and 
2.5x1 + x2 ≤ 20 
3x1 + 3x2 ≤  30 
x1 + 2x2 ≤  16 

Adding the slack variables s1, s2, s3 for converting the last three inequalities to equations one forms the 
problem’s first SIMPLEX matrix, which corresponds to the feasible solution f(0, 0) = 0, as follows: 

1 2 1 2 3

1

2

3

x x s s s | Const.

2.5 1 1 0 0 | 20 s
3 3 0 1 0 | 30 s
1 2 0 0 1 | 16 s

|
3 4 0 0 0 | 0 f(0,0)

 
 − − − − − − − 
 =
 

= 
 = 

− − − − − − 
 − − = 

  

Denote by L1, L2, L3, L4 the rows of the above matrix, the fourth one being the net evaluation row. Since 

-4 is the smaller (negative) number of the net evaluation row and 16 30 20
2 3 1

< < , the pivot element 2 lies in 

the intersection of the third row and second column Therefore, applying the linear transformations L3 →  

1 The profit is changing depending upon the price of the wood, the salaries of the workers, etc. 

2 The mathematical formulation of the problem using TFNs is not unique. Here we have taken 
2

a cb +
=  for all the 

TFNs involved, but this is not compulsory. The change of the values of the above TFNs, changes of course the 
ordinary LP problem obtained by ranking them, but the change of its optimal solution is relatively small.  
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1
2

L3 = L΄3 and L1 →  L1 – L΄3, L2 →  L2 – 3L΄3, L4 →  L4 + 4L΄3, one obtains the second SIMPLEX 

matrix, which corresponds to the feasible solution f(0, 8) = 32 and it is the following: 

1 2 1 2 3

1

2

2

x x s s s | Const.

12 0 1 0 | 12 s
2

3 30 0 1 | 6 s
2 2
1 11 0 0 | 8 x
2 2

|
1 0 0 0 0 | 32 f(0,8)

 
 − − − − − − − 
 

− = 
 
 

− = 
 
 = 
 − − − − − − 
 − = 

 

In this matrix the pivot element 3/2 lies in the intersection of the second row and first column, therefore 
working as above one obtains the third SIMPLEX matrix, which is: 

1 2 1 2 3

1

1

2

x x s s s | Const.

4 30 0 1 | 4 s
3 2

21 0 0 1 | 4 x
3
10 1 0 1 | 6 x
3

|
20 0 0 1 | 36 f(4,6)
3

 
 − − − − − − − 
 

− − = 
 
 

− = 
 
 − = 
 

− − − − − − 
 

= 
 

 

Since there is no negative index in the net evaluation row, this is the last SIMPLEX matrix. Therefore 
f(4, 6) = 36 is the optimal solution maximizing the objective function. Further, since both the decision 
variables x1 and x2 are basic variables, i.e. they participate in the optimal solution, the above solution is 
unique. 

Converting, by applying Proposition 4, the values of the decision variables in the above solution to 

TFNs with DoF equal to 1, one finds that x1 = (α, 11-2α, α+1] with 10 11
3 3

a< <  and x2 = (a, 17-2a, a+1) 

with. 16 17a
3 3

< < . Therefore a fuzzy expression of the optimal solution states that the factory’s maximal 

profit corresponds to a daily production between α and α+1 groups of tables with 3.33 3.67a< < and 
between a and a+1 groups of desks with 5.33 < a < 5.67.  

However, taking for example α = 3.5 and a = 5.5 and considering the extreme in this case values of the 
daily construction of 4.5 groups of tables and 6.5 groups of desks, one finds that they are needed 33 in 
total w.h. for elaboration, whereas the maximum available w.h. are only 30. In other words, a fuzzy 
expression of the solution does not guarantee that all the values of the decision variables within the 
boundaries of the corresponding TFNs are feasible solutions. 

Example 2: Three kinds of food, say F1, F2 and F3, are used in a poultry farm for feeding the chickens, 
their cost varying between 38 - 42, 17 - 23 and 55 - 65 cents per kilo respectively. The food F1 contains 1.5 
- 2.5 units of iron and 4 - 6 units of vitamins per kilo, F2 contains 3.2 - 4.8, 0.6 – 1.4 and F3 contains 1.7 – 
2.3, 0.8 – 1.2 units per kilo respectively. It has been decided that the chickens must receive at least 24 
units of iron and 8 units of vitamins per day. How must one mix the three foods so that to minimize the 
cost of the food? Express the problem’s solution with TpFNs of DoF equal to 2. 

Solution: Let x1, x2 and x3 be the quantities in kilos to be mixed for each of the foods F1, F2 and F3 
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respectively. Then, using TpFNs the problem’s mathematical model could be formulated as follows: 3  
Minimize  

F = (38, 39, 41, 42)x1 + (17, 18, 22, 23)x2 + (55, 56, 64, 65]x3 
subject to the constraints 

x1, x2 , x3 ≥  0, (1.5, 1.8, 2.2, 2.5)x1+ (3.2, 3.5, 4.5, 4.8)x2+ (1.7, 1.9, 2.1, 2.3]x3 ≥ [22, 23, 25, 26] 
[4, 4.5, 5.5, 6]x1+ [0.6, 0.8, 1.2, 1.4]x2+[0.8, 0.9, 1.1, 1.2]x3 ≥  (6, 7, 9, 1 0). 

The ranking of the TpFNs leads to the following LP minimization problem of canonical form: 
Minimize  

f(x1, x2, x2) = 40x1 + 20x2 + 60x3 
subject to the constraints  

x1, x2 , x3 ≥  0 , 2x1+ 4x2+ 2x3 ≥ 24, 5x1 + x2 + x3 ≥  8 
The dual of the above problem is the following: Maximize  

g(z1, z2) = 24z1 + 8z2 
subject to the constraints  

z1, z2 ≥  0, 2z1 + 5z2 ≤ 40, 4z1 + z2 ≤  20, 2z1 + z2 ≤  60 
Working similarly with Example 1 it is straightforward to check that the last SIMPLEX matrix of the 

dual problem is the following: 

1 2 1 2 3

2

1

3

z z s s s | Const.

2 1 200 1 0 | z
9 9 3
1 5 101 0 0 | z
18 18 3
1 4 1400 0 1 | s
9 9 3

|
4 52 400 10 200 0 0 | ( , )
9 9 3 3 3

g

 
 − − − − − − − 
 

= 
 
 

− = 
 
 − − = 
 

− − − − − − 
 

= 
 

 Therefore the solution of the original minimization problem is f min = f( 4
9

, 52
9

, 0) = 400
3

. 

 

In other words, the minimal cost of the chickens’ food is 400
3

≈  133 cents and will be succeeded by 

mixing 4
9

≈  0.44 kilos from food F1 and 52
9

≈  5.77 kilos from food F2. 

Converting the values of the decision variables in the above solution to TpFNs with DoF equal to 2 one 
finds by Proposition 5 that x1, x2, x3 must be of the form  

(α, b, c, α + 2) 
with  

α < b ≤  c < α + 2, b+ c = 18R 4 4
7

a− − . 

and  

R = 4
9

 or R = 52
9

 or R= 0 respectively. 

For R = 4
9

 one finds that  

b + c = 4 4
7

a− . 

3 The problem‘s mathematical formulation using TpFNs is not unique, but the change of its optimal solution is 
relatively small.  

134 Journal of Advances in Applied Mathematics, Vol. 3, No. 4, October 2018

JAAM Copyright © 2018 Isaac Scientific Publishing



Therefore  

b < 4 4
7

a−  - b or b < 2 2
7

a−  

which gives that  

α < 2 2
7

a−  or α < 2
9

. 

Taking for example α = 1
9

, we find that 

b < 

22
9

7

−
= 16

63
. 

Therefore, taking for example b = 15
63

, we obtain that 

c =

44
9

7

−
 - 15

63
 = 17

63
. 

Therefore  

x1 = ( 7
63

, 15
63

, 17
63

, 133
63

). 

Working similarly for R = 52
9

and R = 0 one could obtain  

x2 = ( 196
63

, 340
63

, 362
63

, 488
63

) 

and  

X3 = (- 21
63

, - 15
63

, - 9
63

, 60
63

) 

respectively. 
Therefore, since a TpFN (a, b, c, d) expresses mathematically the fuzzy statement that the interval [b, 

c] lies within the interval [a, d], a fuzzy expression of the problem’s optimal solution states that the 

minimal cost of the chickens’ food will be succeeded by mixing between 15
63

≈ 0.24, 17
63

≈  0.27, 

between 340
63

≈ 5.4, 362
63

≈ 5.75 and between - 15 0.24
63

≈ − , - 17 0.27
63

≈ − kilos from each one of the foods F1, 

F2 and F3 respectively. The values of x3 are not feasible and must be replaced by 0, whereas the values of x1 
and x2 must be checked as we did in Example 1. 

Example 3: A cheese-making company produces three different types of cheeseT1, T2 and T3 by mixing 
cow-milk (C), sheep-milk (S) and milk powder (P). The required quantities in kilos from each kind of milk 
for producing a barrel of each of the three types of cheese are depicted, in the form of TFNs, in the 
following Table: 

Table 1. Required quantities of milk 4 

 T1 T2 T3 
C (1, 2, 3) (5, 6, 7) (0.5, 1, 1.5] 
S (3, 4, 5) (2, 3, 4) (1.5, 2, 2.5) 
P (1.8, 2, 2.2) (0.7, 1, 1.3) (0.8, 1, 1.2] 

 

4 The fuzzy data of Table 1 show that the production of a barrel of T1 requires quantities of cow-milk between 1 and 3 
kilos of sheep-milk 3 and 5 kilos and of milk powder between 1.8 and 2.2 kilos, etc.  
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The cheese-maker’s profit from the sale of a barrel of cheese is 3 thousand euros for T1, 2 thousand euros 
for T3, whereas from the sale of a barrel of T2, the production of which becomes necessary for marketing 
reasons, there is a loss of 1 thousand euros. 

At the end of a certain day the stock of the cow-milk is high, so that at least 200 kilos of it must be used 
the next day, whereas the stock of the sheep-milk is 150 kilos. Further, there exists a stock of 100 kilos of 
expiring milk powder all of which must be spent the next day. Under the above conditions find with DoF 
equal to 0.2 which must be the next day’s production of cheese in order to maximize the profit from its 
sale. 

Solution: Let x1, x2 and x3 be the barrels of cheese to be produced of the types T1, T2 and T3 respectively. 
Then the problem is mathematically formulated as follows:  
Maximize  

F = 3x1 - x2 + 2x3 

subject to the constraints x1, x2 , x3 ≥  0 and  
(1, 2, 3)x1+ (5, 6, 7)x2+ (0.5, 1, 1.5)x3 ≥ (199, 200, 201) 
(3, 4, 5)x1+ (2, 3, 4)x2+(1.5, 2, 2.5)x3 ≤  (149, 150, 151) 

(0.8, 1, 1.2)x1+(0.7, 1, 1.3)x2+(0.8, 1, 1.2)x3 = (99,100, 101) 
The ranking of the TFNs leads to the following LP maximization problem of general form 5: 
Maximize  

f(x1, x2, x2) = 3x1 - x2 + 2x3 
subject to the constraints x1,x2 ,x3 ≥  0 and  

2x1 + 6x2+ x3 ≥  200 
4x1 + 3x2 + 2x3 ≤  150 
2x1 + x2 + x3 = 100. 

Adding the surplus variable s1 to the first inequality, the slack variable s2 to the second one and the 
artificial variables t1 and t2 to the first inequality and the last equation one turns all the special constraints 
to equations. Next, adding by members the two equations containing the artificial variables, one forms the 
problem’s first generalized SIMPLEX matrix as follows:  

1 2 3 1 2 1 2

1

2

2

1 2

x x x s s t t | Const.

2 6 1 1 0 1 0 | 200 t
4 3 2 0 1 0 0 | 150 s
2 1 3 0 0 0 1 | 100 t

3 1 2 0 0 0 0 | 0 f(0,0,0)

4 7 4 1 0 1 1 | t t 300

 
 

− − − − − − − − − 
 − =
 

= 
 = 

− − − − − − − − − 
 − − = 
 − − − − − − − − −
 

− + =  

  

The rows of the artificial variables t1 and t2 are the, so called, anonymous rows of the above matrix. For 
the pivoting process, considering all the columns containing at least one positive number in the 
anonymous rows, we choose the one having the greatest positive number in the last row (of t1+t2), i.e. the 

column of x2. Then, since 200 150 100
6 3 1

< < , the pivot element 6 lies in the first row. Therefore, applying 

the proper linear transformations among the rows of the matrix one forms the second generalized 
SIMPLEX matrix as follows: 

5 It is recalled that a LP problem of general form differs from a problem of canonical form to the fact that there exists 
at least a constraint having the inverse sign of inequality (here ≥ ), whereas there could also exist constraints with the 
sign of equality.  
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1 2 3 1 2 1 2

2

2

2

1 2

x x x s s t t | Const.

1 1 1 1 1001 0 0 | x
3 6 6 6 3

3 1 13 0 1 0 | 50 s
2 2 2

5 17 1 1 2000 0 1 | t
3 6 6 6 3

10 13 1 1 100 1000 0 0 | f(0, ,0)
3 6 6 6 3 3

5 17 1 1 2000 0 1 | =t t
3 6 6 6 3

 
 − − − − − − − − − 
 

− = 
 
 

− = 
 
 = 
 

− − − − − − − − − 
 
− − − − = 


 − − − − − − − − −

 − +
 







 

The pivot element 17/6 lies now in the intersection of the column of x3 and the row of t2 and the third 
generalized SIMPLEX matrix is the following: 

1 2 3 1 2 1 2

2

2

3

1 2

x x x s s t t | Const.

4 3 3 1 5001 0 0 | x
17 17 17 17 17
36 7 7 9 2500 0 1 | s
17 17 17 17 17
10 1 1 6 4000 1 0 | x
17 17 17 17 17

35 5 5 13 300 500 4000 0 0 | f(0, , )
17 17 17 17 17 17 17

0 0 0 0 0 0 0 | 0=t t




− − − − − − − − −


− =



− − =

 − − =


− − − − − − − − −


=

 − − − − − − − − −

+



















 
 

 

Therefore, omitting the last row and the columns of the artificial variables one obtains the problem’s 
first canonical SIMPLEX matrix. 

Next, continuing the process in the standard way one finally reaches the optimal solution  

f max = f( 125 250 175, ,
18 9 9

) = 575
18

. 

Converting the values x1 =
125
18

≈  6.94, x2 = 250
9

≈  27.78, x3 = 175
9

 ≈  19.44 to TFNs with DoF equal to 

0.2 one finds by Proposition 5 that x1 ≈  (α, 20.63-2α, α+0.2), with 6.81 < α < 6.87, x2 ≈  (a, 83.13-2a, 
a+0.2), with 27.64 < a <27.71 and x3 ≈  (a, 58.13-2a, a+0.2), with 19.31 < a <19.37. 

Taking for example α = 6.85, a = 27.7 and a = 19.35 one finds that x1 ≈  (6.85, 6.93, 7.05), x2 ≈  (27.7, 
27.99, 28.19), and x3 ≈  (19.35, 19.43, 19.55), which are very close to the values of the decision variables in 
the crisp optimal solution. In general, the smaller is the chosen DoF of the FNs involved in the problem’s 
optimal solution, the more creditable its corresponding fuzzy expression.  

4   Conclusion 

A new technique was developed in this paper for solving Fuzzy LP problems by ranking the FNs involved 
in their statements and by solving the ordinary LP problem obtained in this way with the standard theory. 
Real-life examples were also presented to illustrate our method. In LP problems with a vague structure a 
fuzzy expression of their solution is often preferable than the crisp one. This was attempted in the present 
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work by converting the values of the decision variables in the optimal solution of the corresponding 
ordinary LP problem to FNs with the desired DoF. The smaller is the value of the chosen DoF, the more 
creditable the fuzzy expression of the problem’s optimal solution. 

An analogous method could be applied for solving Grey LP problems and systems of equations with 
fuzzy or grey data and this is the main target of our future research on the subject.  
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