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Abstract. Chaotic Vibrations are considered for a quarter-car model excited by the road surface 
profile. The equation of motion is obtained in the form of a classical Duffing equation and it is 
modeled with deliberate introduction of parametric excitation force term to enable us manipulate the 
behavior of the system. The equation of motion is solved using the Method of Multiple Scales. The 
steady-state solutions with and without the parametric excitation force term is investigated using 
NDSolve MathematicaTM Code and the nonlinear dynamical system’s analysis is by a study of the 
Bifurcations that are observed from the analysis of the trajectories, and the calculation of the 
Lyapunov. In making the system more strongly nonlinear the excitation amplitude value is artificially 
increased to various multiples of the actual value. Results show that the system’s response can be 
extremely sensitive to changes in the amplitude and the that chaos is evident as the system is made 
more nonlinear and that with the introduction of parametric excitation force term the system’s 
motion becomes periodic resulting in the elimination of chaos and the reduction in amplitude of 
vibration. 

Keywords: chaotic vibration, parametric excitation, excitation frequency, quarter-car, 
magnetorheological dampers. 

1   Introduction 

Suspension is the system of tires, tire air, springs, shock absorbers, and linkages that connects a vehicle 
to its wheels and allows them to move relative to one another. Suspension systems are meant to serve a 
dual purpose: they are to contribute to the vehicle's road holding/handling and braking for good active 
safety and driving pleasure, as well as they keep vehicle occupants comfortable and a ride quality that is 
reasonably well isolated from road noise, bumps, vibrations, and so on. 

Unwanted vibrations due to kinematic excitations from rough surface road profiles are still of research 
interest to scientists and inventors, whose aim is to reduce the effect of vehicle’s vibrations on drivers 
and passengers, [1] and [2]. Many researchers have studied new applications of active and semi-active 
control procedures and special devices to reduce vehicle vibrations, Guo et.al.[3] and Lauwerys et.al.[4] 
Szabelski & Samodulski [5] and Mitschke [6] re-examined old mechanical quarter-car models in the 
context of active damper applications. Authors like Choi & Lee [7] and Lai & Liao [8] have deduced that 
dampers based on magnetorheological fluid with typical hysteretic characteristics have significant 
promise for effective vibration damping in many applications. Other vehicle vibration damping methods 
such as ‘Sky hook’ control or H ∞ control have been proposed and tested in several car applications by 
[9] and [10]. Dixit & Borse [11] and Allamraju [12] advanced the argument that suspensions are basically 
required to provide a high level of ride comfort while maintaining a reasonable ability to ensuring safety 
by keeping the vehicle on the road. They maintained that passive suspension components are still very 
competitive, because they are simple, reliable and inexpensive and do not need a power supply, but the 
performance from the viewpoint of ride comfort is much worse when compared with the semi-active and 
active systems. Jian-Da et.al [13] proposed a semi-active vehicle suspension system using an adjustable 
shock absorber for a quarter-car model vibration control. Their results indicated that both PID 
Controller and the Fuzzy Controller effectively suppress the vibration of the quarter-car model. Most 
active suspensions require significant external power to function and that there is a considerable penalty 
in complexity, reliability, cost and weight. With a view to reducing complexity and cost while improving 
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ride comfort, handling and performance, the concept of piezoelectric exciter (piezoexciter) has emerge. In 
this kind of system, the conventional suspension spring and the shock absorber are retained, while the 
piezoexciter is fixed parallel to the spring and absorber. 

This paper proposes an active vibration control scheme for controlling transverse vibration of rotor 
shaft due to mass unbalance and presents both theoretical and experimental studies. The use of 
piezoelectric actuators in active vibration control has been considered in the past by [14] and [15]. 
Yabuno et.al [16] used a piezoelectric actuator to stabilize the parametric resonance induced in a 
cantilever beam and to control bifurcation resulting in the shift of the bifurcation set and the expansion 
of the stable region. No attempt of vibration control of a quarter-car system by the use of a vertically 
placed piezoelectric exciter (that introduces parametric excitation force) has, however been reported to 
the authors’ knowledge. Struble [17], Dugundji et.a[18], Chester[19] and Cartmell [20] have studied the 
effects of combined parametric and forced vibrations in dynamic systems. Mustafa & Ertas [21] 
theoretically and experimentally examined the effect of a pendulum (attached to the tip of a 
parametrically excited cantilever beam) whose natural frequency is tuned to be commensurable with a 
frequency of the beam in order to generate autoparametric resonance. For chosen external and internal 
resonance combinations, where the excitation frequency is twice the natural frequency of the first beam 
mode, and the linearised pendulum frequency is one-half that of the first beam mode, the results showed 
that, in some parametric excitation frequency ranges, the pendulum acts as vibration-absorbing device 
in the same manner as the pendulum attached to the main system under external excitation. The above 
ideas have led to the design of the piezoelectric exciter and the deliberate introduction of parametric 
excitations into a flexible rotor-bearing system axially to moderate the response of the pre-existing mass-
unbalance vibration inherent to the rotor by [22] and [23]. The success of the above has led to the 
application of the piezoelectric exciter to the quarter-car to investigate the interactions between forced 
vibrations, which emanates from uneven road profile and parametric excitations, which results from the 
periodic stiffness variations caused by periodic vertical excitations from the actuator. The model of [2] is 
used with and without parametric force term in this paper. The method of Multiple Scales is used to 
solve the model equations to obtain the general solutions. Then MathematicaTM Code is used evaluate 
the obtained MMS solutions with and without the excitation force term. Bifurcation analysis is also 
performed using MathematicaTM and Dynamics 2 by Nusse and Yorke. 

2   Mathematical Model of the Quarter-Car 

The equation of motion of a modified single degree of freedom quarter-car model (Figure 1) of [2] is used 
and presented as 
 ( )1 0 0hmx k x x F+ − + =  (1) 
where, Fh is an additional nonlinear hysteretic suspension damping and stiffness force dependent on 
relative displacement and velocity, x0 is the road excitation, x is the body’s vertical displacement and m 
is the body mass. 

mass

x

Fh
K1

X0=Asin(ᴥt)

F(act)

 

Figure 1. Modified 1DOF quarter-car model subjected to kinematic excitation with parametric exciter and 
nonlinear damping and stiffness. 
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Assuming 0y x x= − , ( )0 sinx A t= Ω  and ( ) ( ) ( )3 3

2 0 1 0 2 0hF k x x c x x c x x= − + − + −     Litak et. al. 

(2008), where, Ω  is the excitation frequency and is equal to 02 vπ
λ

Ω = , 0v  is the velocity of the car, 

A and λ  are the amplitude and wavelength of the harmonic road profile, equation (1) can be rewritten 
as 
 ( )2 3 3 2

1 2 3 siny y B y B y B y A tω+ + + + = Ω Ω    (2) 

where, 2 1k
m

ω = , 2
1

k
B

m
= , 1

2

c
B

m
=  and 2

3

c
B

m
= . The system’s parameters are taken from [23] and are 

as follows: 240 m kg= , 1 160000 N/mk = , 3
2 300000 N/mk = − , 1 250 Ns/mC = − , 3 3

2 25 Ns /mC = . 
Adding the parametric term to equation (2), we get, 

 ( ) ( )2 3 3 2
1 2 3 2cos sinay y B y B y B y F t y A tω+ + + + − Ω = Ω Ω    (3) 

where, ( )2cosaF t yΩ  is the parametric force term and aF  is the actuator force, where, act
a

F
F

m
=  and 

2 2Ω = Ω . Because of its simplicity, this model allows for a thorough examination of the parameters of 
the quarter-car vibration system, as well as the transition to a chaotic regime and the effect of the 
parametric excitation force. Although this simple model cannot simulate the detailed motion of a real 
vehicle, it can sufficiently approximate the dynamics to allow the results of analytic procedures 
performed on the simple nonlinear model to provide insight into the dynamics of the real vehicle. 

3   Design and Selection of Piezoexciter Component 
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Figure 2. (a) Mass-Actuator assembly when the system is not excited. (b) Mass-Actuator assembly when the 
system is excited at maximum amplitude. (c) Free length of spring. 

The actuator only displaces by micrometers so there will be a potential gap between the actuator and 
the base of the mass when the system is excited. The actuator will therefore have to follow the base of 
the mass as it gets displaced, but because the other end of the actuator has to react against something, 
a spring is needed to provide sufficient reaction, and to take up the space left as the mass moves 
upwards. The maximum spring force available is given in equation (4) 
 max 2s sF k δ=  (4) 
where, Fsmax is the maximum spring force, ks is the spring constant and 2δ  is the maximum spring 
compression. Figure 2(b) shows the mass having displace upwards as a consequence of the road 
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excitation. The spring has extended to fill the gap, ∆ , and the remaining spring compression is 1δ . This 
is a pre-compression and is set up via equation (5) such that it satisfies the need for the minimum 
spring force (Fsmin) offered by the spring to equal at least the maximum force which the actuator is 
capable of Fa(max), meaning 
 min (max) 1s a sF F k δ= =  (5) 

where, 1δ  is the ‘preload’ pre-compression. As the minimum spring force available must be enough to 
resist the maximum force generated by the actuator, the actuator then can transmit its force to the 
mass, even when the mass has travelled by its maximum displacement upwards. The free length of the 
spring is as shown in Figure 2(c). It can easily be seen that the relationship between the pre-compression 

1δ , the maximum compression 2δ , and the maximum displacement, ∆ , is given by the equation (6) 

 1 2δ δ= − ∆  (6) 
This means that the maximum spring force can be written as in equation (7) 

 ( )max 1s sF k δ= + ∆  (7) 
A spring was chosen based on the maximum required spring force and hence stiffness was obtained. 

3.1  Maximum Spring Force 

Equation (3) was used to find the parametric excitation force that is actually needed for the mass-spring 
quarter-car system, in order to get parametric resonances and the displacement due to the movement of 
the mass. The NDSolve integrator within MathematicaTM code was employed to solve the differential 
equation. All other parameters were fixed and the parametric excitation force term value was varied 
until a parametric excitation plot was obtained as shown in Figure 3 and the value at which the 
response is predicted was taken as a threshold value for the parametric excitation force. 

 

Figure 3. Parametric plot 

From the above analysis, the maximum actuator force Fa (max) is found to be 10,000 N . Calculation of 
the maximum spring force is done using data from a realistic quarter-car model under construction at 
the Cape Coast Technical University and it is calculated using equations (4) to (7) and found to be 
10,011.8 N . 

4   Approximate Analytical Solution to the Equations of Motion. 

The Method of Multiple Scales (MMS) is used in solving equations (2) and (3). We nondimensionalise 
the time scale t and order the equations by introducing the small parameter ε. Let nondimensional time 

τ be tτ ω= , where, k
m

ω =  and it is the natural frequency. ω is normalized to unity, therefore 1τ ≡  

and letting y yε=  and substituting across the equations (2) and (3) and solving give us the 
approximate solutions for the with and without the parametric excitation force terms. Equations (8) and 
(9) are the full time-domain solutions in the original parameters of equations (2) and (3) with and 
without parametric force term respectively. p, q, r and s are steady-state amplitudes. 
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5   Investigation of System’s Dynamics 

The models of the quarter-car system as equations (1) and (2) are used after some modifications for 
analysing the behaviour of the dynamical system using the Dynamics 2 software and MathematicaTM 
code. We therefore write the Model equations in the following form: 
 ( )3 3

1 2 3 4 siny C y C y C y C y tρ+ + + + = Ω    (10) 

 ( ) ( )3 3
1 2 3 4 5 2cos siny C y C y C y C y C y t tρ+ + + + − Ω = Ω    (11) 

where, 1
1

c
C

m
= ; 2

2

c
C

m
= ; 1

3

k
C

m
= ; 2

4

k
C

m
= ; 5 aC F= ; 

2A
m

ρ Ω
= ; ρ is the excitation amplitude, Ω is the 

excitation frequency, 2Ω  is the parametric excitation frequency. 

5.1  Nondimensionalization 

The time t is nondimensionalised by using the rotor system natural frequency ω. Nondimensionalisation 
of the timescale in equations (10) and (11) is introduced by stating tτ ω= , where, ω is the natural 
frequency of the first mode of the flexible rotor system. Therefore, 

 ( ) ( )
2 2 2

2 2 2

d y d y d yy y t y
dt d

d

ω ω τ
ττ

ω

′′= = = ∴ =
 
  
 

   (12) 

 ( ) ( )dy dy dyy y t y
dt d

d

ω ω τ
ττ

ω

′= = = ∴ =
 
  
 

   (13) 

In terms of the dimensionless timescale, τ, equations (10) and (11) become 

 ( )3 3
1 2 3 4 siny C y C y C y C yω ω ω ρ τ

ω

 Ω′′ ′ ′+ + + + =   
 

 (14) 

 ( )3 3 2
1 2 3 4 5 cos siny C y C y C y C y C yω ω ω τ ρ τ

ω ω

   Ω Ω′′ ′ ′+ + + + − =        
 (15) 

where the prime (') denotes differentiation with respect to dimensionless time τ. Dividing equations (14) 
and (15) by ω, gives 

 ( )3
1 2 3 4 siny C y C y C y C y phitρ

ω
′′ ′ ′+ + + + =  (16) 

 ( ) ( )3
1 2 3 4 5 cos 2 siny C y C y C y C y C y phit phitρ

ω
′′ ′ ′+ + + + − =  (17) 

where, 1
1

C
C

ω
= ; 2 2C Cω= ; 3

3

C
C

ω
= ; 4

4

C
C

ω
= ; 5

5

C
C

ω
= ; phi φ= = Ω  

The second order ordinary differential equations are then split into first order ordinary differential 
equations making them more compact. y v′ =  

 3
1 2 3 4sin( )v t C v C v C y C yρ φ

ω
′ = − − − −  (18) 

 3
1 2 3 4 5 2sin( ) cos( )v t C v C v C y C y C y tρ φ φ

ω
′ = − − − − +  (19) 

These first order equations are then used to calculate time response, phase plane trajectories and 
predictions of Bifurcations. 

The parameter values for the program codes are presented in Table 1 for the models of coupled 
equations with and without the parametric force term, corresponding to all the data described in section 
2. 
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Table 1. Data used for numerical simulations 

 Dimensional Nondimensional 

Stiffness (Linear) 3 585.6C = [s-2] 
3 22.7C =  

Damping Coefficient 1 1.04C = − [s-1] 1 0.205C = −  

Nonlinear Damping Coefficient 2 0.104C = [s-3] 2 0.528C =  

Stiffness (Cubic) 4 1250C = − [m-2s-2] 4 48.45C = −  

Actuator Force 5 41.7C = [ms-2] 5 1.62C =  

Excitation Amplitude 0.277ρ = [ms-2] 0.01ρ
ω

=  

Excitation Frequency 25.8φΩ = = [rads-1] 

Parametric Frequency 2 2 51.6φΩ = = [rads-1] 

 

Figure 4. Amplitude of the response as a function of the frequency-without parametric force term. 

 

Figure 5. Amplitude of the response as a function of the frequency-with parametric force term. 
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6   Results and Analysis 

In Figures 4 and 5, each dot on the curves corresponds to a singular point. Figure 4 shows a plot of 
amplitude y versus forcing frequency Ω when the amplitude of excitation A=0.3 m (i.e. where the 
strongest nonlinear response is observed). A Peak amplitude vibration of 9.8 cm is observed. The well-
known jump phenomenon indicating instability is observed. In Figure 5, including parametric force term 
in the model equation, and at the amplitude of excitation A=0.3 m, the amplitude of vibration reduced 
to 3.5 cm. It is also observed that the jump is eliminated and the peak amplitude of vibration of the 
motion is reduced by approximately 64.3%. 

   
 (a) (b) 

Figure 6. Bifurcation diagrams of amplitude as a function of the nondimensionalised excitation acceleration for the 
model without parametric force term at (a) the amplitude of a road profile at A=0.1m; (b) the amplitude at 
A=0.3m. 

 

Figure 7. Bifurcation diagram of amplitude as a function of the nondimensionalised excitation acceleration for the 
model with parametric force term at amplitude of a road profile A=0.3m. 

Figures 6 and 7 show bifurcation diagrams of amplitude as controlled by the nondimensionalised 
excitation acceleration, when the excitation is set equal to the resonance frequency. In this work for the 
physical system to become more intrinsically nonlinear, the excitation amplitude value have to be 
increased to various multiples of the actual value. This effect causes the system to show possible 
bifurcations to chaos. The periodic response for the case based on the smallest amplitude A=0.1 m in 
Figure 6 (a) (i.e. the most weakly nonlinear response), bifurcates to chaos as the amplitude of the road 
profile increases to A=0.3 m in Figure 6 (b), at dominant Lyapunov exponents of 1 0.1405λ = − and 

1 0.0124λ = , respectively. The arrows indicate excitation acceleration reduces in the simulations. 
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Negative Lyapunov exponents show stable motion, while the positive Lyapunov exponents show clear 
indications of chaos. 

 
 (a) (b) (c) 

Figure 8. Poincare Map (a), Phase Plane (b) and Time Plot (c) the nondimensionalised excitation acceleration for 
the model without parametric force term at amplitude of a road profile A=0.3m 

 
 (a) (b) (c) 

Figure 9. Poincare Map (a), Phase Plane (b) and Time Plot (c) the nondimensionalised excitation acceleration for 
the model with parametric force term at amplitude of a road profile A=0.3m. 

Figure 7 shows the bifurcation as controlled by nondimensionalised excitation acceleration, and using 
the resonance frequency (Ω) value, when a parametric force term is included at a parametric frequency 
of twice the resonance frequency value. By increasing the amplitude value to A=0.3 m, the periodic 
responses remain periodic. The bifurcation diagram did not change qualitatively, while the negative 
Lyapunov exponent of 1 0.0492λ = −  show stable periodic motion. This means upon including the 
parametric force term in the system the chaotic motion present in the quarter-car system, and observed 
in Figure 6 (b), becomes stable. This indicates that the chaotic motion, which is bounded by the 
bifurcation set, is automatically shifted resulting in stable periodic motion. 

The analysis of Figures 6 and 7 are extended to Phase planes, Poincare maps and Time plots (i.e. 
Figures 8 and 9). The Phase planes and Time plots are plotted at assumed steady-state conditions, 
taken to be during the interval 995 1000t = −  second. However, the Poincare maps are plotted from the 
transient time (i.e. 0 1000t = −  seconds). The plots are found in a number of regular and irregular 
points. At nondimensionalised excitation acceleration for the model without parametric force term at 
amplitude of A=0.3 m, the bifurcation diagram in Figure 6 (b) shows a chaotic motion with positive 
Lyapunov exponent. Its corresponding Poincare map (Figure 8 (a)) shows irregular scattered points and 
is that of chaotic motion. The Phase Plane (Figure 8 (b)) underpin the above. The plots have overlaid, 
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complicated and repeated orbit cross-overs. In Figure 8 (c), the Time plot is non-periodic, the 
oscillations do not repeat and is another qualitative visual indicator of chaotic motion. At 
nondimensionalised excitation acceleration for the model with parametric force term at amplitude of 
A=0.3 m, the bifurcation diagram in Figure 7 shows stable periodic motions with negative Lyapunov 
exponents. Its corresponding Poincare map, Phase Plane and Time plot in Figure 9 (a), (b) and (c) 
respectively display stable periodic motions. 

7   Conclusion 

Chaotic vibrations of a quarter-car model excited by the road surface is studied in this paper. The 
equation of motion and parameters used were taken from [24] was modified to include a parametric 
excitation force term to enable the manipulation of the system’s behavior. The simple model 
approximates the dynamics sufficiently to provide insight into the dynamics of the real vehicle. The 
results from the multiple scales analysis show evidence of a phenomenon whereby the responses of the 
amplitudes show softening characteristics, jump phenomenon and stable and unstable solutions when 
the equations of motion contain no parametric force term. Including parametric force term, the solution 
shows decrease in amplitude value by 64.3%, elimination of the jump phenomenon and stable solutions. 
The numerical results show similar trends with the multiple scales results. In this studies chaos is 
evident as the system becomes more nonlinear due to increase in excitation amplitude values and that 
with the introduction of parametric force term the system’s motion becomes periodic. Comparing the 
piezoelectric exciter (piezoexciter) concept to the other methods mentioned in the introduction especially 
the magnetorheological dampers, which seem to be very popular, the piezoexciter concept comes with 
reducing complexity and cost while improving ride comfort, handling and performance. 
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