Chile's Trade Patterns

OBAMBI Chardel Cardorel¹, GNOMBLEROU Edna², ANOUBA Acha Arnaud Martial³

¹School of Economics, Shandong University, Jinan, China

² School of International Education, GuangXi University of Finance and Economics, Nanning, China ³ School of business, Hohai University, China

Email: ¹ chardelobambi@outlook.com, ² gnomblerou_edna@yahoo.fr, ³ arnaudanouba@gmail.com

Abstract. The paper comprehensively and candidly analyzes the tendency and direction of imports and exports of Chile by employing a time series analysis for data ranging from the year 1990 to 2018. The paper analyzed the patterns of the imports, exports and balance trade and consequently predict the growth rates that Chile has witnessed in the past 29 years. The regression model will be employed to compound the growth rates which will help in forecasting the trend of subsequent imports and exports. The results show that both imports and exports have been increasing and decreasing alternatively. The seasonality was observed to be for a cycle of 5 years. However, the last two years reveal that the exports and imports have been experiencing upward curve. The regression model is employed to determine the constant and the slope of the imports, exports and balance of trade upon which forecasts can be made for subsequent years. The results from the moving averages and linear regressions of individual models have revealed that the country is going to experience a decrease in imports and exports in the near future due to its seasonal cycle pattern.

Keywords: imports, exports, trade balance, trends, Chile

1 Introduction

Chile is the forty-five second biggest fare economy on the planet and the sixty-first most complex economy as indicated by the Economy Complexity Index (ECI). Chile has an open economy which depends mostly on international trade. It is estimated that the international trade accounted for 57.5% of its Gross Domestic Product in 2018, which was a surge from 2017. Chile is amongst the leading producers and distributors of various merchandises such as Fish, Ores, Copper, Fruits, Wood, Beverages, and fruits. On the other hand, it imports cars, crude petroleum, and refined petroleum. The country plays a critical role in the global economy and its commercial benefits are anticipated to scale up due to the increase in the demand for agricultural products and minerals. The exporting partners of Chile are; Japan, United States, China while its importing partners are Brazil, United States and China. China singed a Free Trade Agreements with various vital economies notably South Korea, European Union, China, and United States. The country is also a member of Pacific Alliance with Colombia, Mexico, and Peru since 2012. Additionally, the country signed a trade continuity agreement with United Kingdom during the Brexit uncertainties in order to secure a continuous trade relation. However, the challenges to its trade include replacement of the failed Union of South American Nations with Prosur in order to enhance the economic amalgamation and trade relations in the region.

This research aims at examining the growth in trends or patterns in Chile's imports and exports. An in-depth focus has been put on imports and exports since they place a critical role in determining the balance of trade and Gross Domestic Product of a country. Another vital aspect of this study is to forecast Chile's imports and exports in order to have a clear picture of what is expected in the country's economy. The information of the trade balance, imports and exports is crucial since it determines the future policies concerning the international trade, and realizing targeted growth rates. Additionally, the information help decision makers and other relevant authorities in making year plans, planning budgets, making foreign policies in order to circumvent any potential negative situation in future.

The remaining part of the paper is structured in the following manner; Review of relevant literature, methodology, explanation of data background concerning the pattern of Chile's intercontinental trade and discussion of empirical results. The paper ends with conclusion.

2 Review of Relevant Literature

For several years, the global economy has fully-fledged and shifted with an upscale of production and commercial goods and services. State trade policies have concentrated on the decrease of transnational barrier have significantly contributed to this increase in the production components and tradable goods (Al-Zyoud & Elloumi, 2017). The advancement of technology has led to increase in the production of goods and services due to economies of scale; this has resulted to a decrease in the prices of good. Consequently, the transportation, development of tradable goods and communication to be relatively cheaper. The Chile percentage of this increasing trade with other developing nations has significantly surged due to the increase trade agreements with other nations. As a result of this faster growth, its growth rate has been faster compared to gross yield of goods or Gross Domestic Product.

Nevertheless, to fully understand the relationship between Gross production of Goods and GDP, it is essential to comprehend the explicit impact of imports-exports on the economy of a nation. This is important because Gross Domestic Product is normally discoursed in correlation to the economy-wide revenues and utilized by the governments in supporting initiation of policies (Bas, & Strauss-Kahn, 2014). The growth of imports and exports have a positive impact to the country's national gross product. A growth in GDP leads to price stability, increase in employment and reduce inflation. It is therefore, important for a country to establish its future imports, exports and balance of trade in order to make policies that are helpful to the economy. The research by Vollaard (2014) established that disintegration of European industries due to internationalized trade contributes to the phenomenon where exports rise while their values that are added to the national production is little.

Though, the existing literature seem not to generate a consensus regarding the existence of such kind of relationship. Study by Al-Zyoud and Elloumi (2017) established that trade openness is straightly related to several commercial goods of a state economy and goes past the fundamental resource areas such as natural gas, mining, stone and crude oil to manufacturing sector. Chile's focus on exports to United Kingdom amid of Brexit resulted to loss of consideration basis in fast growing markets in European union and as a result, Chile's total trade is probable to have insignificant straight impact on trade terms in markets. Box and Jenkins (2015) have supported this sentiment after conducting a research on how a country's import is not as important as its exports. Contrary, Shahbaz (2012) conducted his study by use of Cobb-Douglas function of production in combination with VECM Granger causativeness method and he established that open trade has a positive influence towards a country's growth in economy and protects an business from external risks. Fundamentally owing to the reality that several studies used dissimilar econometric methods in testing the correlation leading to varied results. Further macroeconomic analysis is required to solve the predicament between methodology and results.

Hruzova, Rypka, and Hron (2017) used Log-ratio statistical method to analyze the pattern of trade flows. Their study differentiated labor and capital relative to value addition, disintegrating trade statistics on production components and exported products. However, this study will use moving averages and regression models to establish the patterns. Mukhtar and Rasheed (2010) conducted a research on imports and exports in Pakistan. His research affirmed the fact that several literatures focused on long-run correlation between methodology and results hence, resulting to the inconsistencies witnessed.

3 Data and Methodology

For accurate analysis of the pattern of Chile's trade, the aggregate imports and exports were computed using the present market prices. Table 1 below shows Chile's imports and exports from 2014 to 2018 in USD million.

Copyright © 2020 Isaac Scientific Publishing

Year	Import	Export	Balance of Trade
1990	7022279	8522024	1499745.28
1991	7452625	8960062	1507437.05
1992	9455495	9913289	457793.53
1993	10541862	9308256	-1233605.63
1994	11149066	11368678	219612.16
1995	14903049	15901137	998087.68
1996	16809974	15406822	-1403151.36
1997	18110804	16678189	-1432614.91
1998	17082406	14841618	-2240787.46
1999	13891478	15619179	1727701.51
2000	16619726	18214504	1594777.77
2001	16136155	18745415	2609259.16
2002	15383398	17423088	2039690.03
2003	19245178	21650906	2405727.5
2004	24714538	33025407	8310869.12
2005	32926775	41972988	9046213.59
2006	58829357	60596328	1766970.49
2007	47596990	68560429	20963439.73
2008	62793574	64507601	1714027.59
2009	42844129	55458960	12614830.73
2010	59007358	71106106	12098748.24
2011	74848007	81437589	6589582.68
2012	80085757	78062995	-2022762.15
2013	79347346	76766729	-2580616.48
2014	72849514	75083497	2233983.37
2015	62386717	62033060	-353656.55
2016	59352044	60717528	1365484.07
2017	65257276	68858402	3601125.94
2018	74187323	75481714	1294390.54

 Table 1. The import, export and balance of trade of Chile from 1990 to 2018

4. Analysis

Table 1 shows the trend of import, export and Balance of trade from 1990 to 2018. The trend line from the graph above shows that both export and import in the first decade (1990-1999) was low as compared to the import and exports in the second decade (2000 to 2009). However, the highest import and exports were witnessed in the beginning of the third decade (2010-2018). As it can be observed, the highest import was in 2012 where the country's imports rose to \$80,085,757 while the highest export figure was witnessed in 2011 whereby the export figure was \$81,437,589. This shows that the country's exports and imports have exhibited a positive and upward trend. On the other hand, the balance of trade remained low during the forecasted period due to positive correlation between the exports and imports. It should be noted that the balance of trade is computed by subtracting the imports from the export.

4.1 Import, Export and Balance of Trade Forecast

The research used moving average to predict the exports, imports and balance of trade in subsequent year 2019, 2020 and 2021. The first technique of moving average that was used is two year moving average which is used to predict either the export, import or balance of trade of the subsequent year. The predictions were as follows.

Year	Import	Imports 2YMA	Imports 3YMA	Imports 4YMA
1990	7022279			
1991	7452625			
1992	9455495	7237452.035		
1993	10541862	8454060.29	7976799.747	
1994	11149066	9998678.53	9149994.157	8618065.283
1995	14903049	10845464.07	10382141.1	9649762.178
1996	16809974	13026057.73	12197992.45	11512368.13
1997	18110804	15856511.49	14287363.07	13350987.78
1998	17082406	17460388.87	16607942.32	15243223.3
1999	13891478	17596604.93	17334394.54	16726558.21
2000	16619726	15486941.72	16361562.47	16473665.29
2001	16136155	15255601.77	15864536.48	16426103.35
2002	15383398	16377940.67	15549119.63	15932441.2
2003	19245178	15759776.75	16046426.5	15507689.26
2004	24714538	17314288.15	16921577.22	16846114.41
2005	32926775	21979858.01	19781038.05	18869817.38
2006	58829357	28820656.36	25628830.29	23067472.25
2007	47596990	45878065.98	38823556.6	33928961.99
2008	62793574	53213173.32	46451040.5	41016914.84
2009	42844129	55195281.67	56406640.15	50536673.82
2010	59007358	52818851.54	51078230.87	53016012.43
2011	74848007	50925743.45	54881686.9	53060512.56
2012	80085757	66927682.13	58899831.18	59873266.84
2013	79347346	77466881.78	71313707.06	64196312.61
2014	72849514	79716551.4	78093703.15	73322116.77
2015	62386717	76098429.74	77427538.79	76782655.76
2016	59352044	67618115.27	71527858.81	73667333.34
2017	65257276	60869380.57	64862758.24	68483905.15
2018	74187323	62304659.92	62332012.26	64961387.59
2019		69722299.47	66265547.7	65295840.02
2020			46481532.98	49699160.78

Table 2. Forecast for imports using two, three- and four-year moving averages.

Four year moving average is the best prediction technique for 2019, 2020 and 2021Import forecast for 2019 = (62386717 + 59352044 + 65257276 + 74187323)/4 = \$65,295,840.02Import forecast for 2020 = (59352044 + 65257276 + 74187323)/4 = \$49,699,160.78

Year	Import	Imports 2Y MA	Imports 3YMA	Imports 4YMA
1990	8522024			
1991	8960062			
1992	9913289	8741043.2		
1993	9308256	9436675.58	9131791.7	
1994	11368678	9610772.48	9393869.14	9175907.84
1995	15901137	10338467.33	10196741.12	9887571.455
1996	15406822	13634907.65	12192690.52	11622840.07
1997	16678189	15653979.65	14225545.9	12996223.49
1998	14841618	16042505.73	15995382.79	14838706.69

 ${\bf Table \ 3.} \ {\bf Exports \ forecast \ using \ two, \ three, \ and \ four \ moving \ averages}$

Year	Import	Imports 2Y MA	Imports 3YMA	Imports 4YMA
1999	15619179	15759903.75	15642209.96	15706941.7
2000	18214504	15230398.75	15712995.52	15636452.24
2001	18745415	16916841.41	16225100.42	16338372.58
2002	17423088	18479959.14	17526365.78	16855178.94
2003	21650906	18084251.35	18127668.82	17500546.38
2004	33025407	19536996.92	19273136.11	19008478.03
2005	41972988	27338156.32	24033133.6	22711203.83
2006	60596328	37499197.71	32216433.69	28518097.31
2007	68560429	51284658.02	45198241	39311407.17
2008	64507601	64578378.43	57043248.43	51038788.07
2009	55458960	66534015.33	64554786.08	58909336.67
2010	71106106	59983280.7	62842330.22	62280829.57
2011	81437589	63282532.93	63690889.08	64908274.13
2012	78062995	76271847.59	69334218.4	68127564.15
2013	76766729	79750292.05	76868896.65	71516412.49
2014	75083497	77414862.09	78755771.17	76843354.84
2015	62033060	75925113.18	76637740.37	77837702.61
2016	60717528	68558278.68	71294428.92	72986570.38
2017	68858402	61375294.33	65944695.2	68650203.75
2018	75481714	64787964.92	63869663.42	66673121.8
2019		72170057.71	68352547.89	66772676.02
2020			48113371.81	51264410.92

Using the four-year moving average, we can predict the exports for year 2019 and 2020 as follows: Export forecast for 2019 = 62033060 + 60717528 + 68858402 + 75481714)/\$ = \$ 66,772,676.02Export forecast for 2020 = (60717528 + 68858402 + 75481714)/4 = \$5,126,4410.92

Year	BOT	BOT 2YMA	BOT 3YMA	BOT 4YMVA
1990	1499745			
1991	1507437			
1992	457793.5	1503591.165		
1993	-1233606	982615.29	1154991.953	
1994	219612.2	-387906.05	243874.9833	557842.5575
1995	998087.7	-506996.735	-185399.98	237809.2775
1996	-1403151	608849.92	-5301.93	110471.935
1997	-1432615	-202531.84	-61817.17333	-354764.2875
1998	-2240787	-1417883.135	-612559.53	-404516.6075
1999	1727702	-1836701.185	-1692184.577	-1019616.513
2000	1594778	-256542.975	-648566.9533	-837213.055
2001	2609259	1661239.64	360563.94	-87730.7725
2002	2039690	2102018.465	1977246.147	922737.745
2003	2405728	2324474.595	2081242.32	1992857.118
2004	8310869	2222708.765	2351558.897	2162363.615
2005	9046214	5358298.31	4252095.55	3841386.453
2006	1766970	8678541.355	6587603.403	5450625.06
2007	20963440	5406592.04	6374684.4	5382445.175
2008	1714028	11365205.11	10592207.94	10021873.23
2009	12614831	11338733.66	8148145.937	8372662.85

Table 4. Balance of trade forecasts using two, three, and four moving averages

Year	BOT	BOT 2YMA	BOT 3YMA	BOT 4YMVA
2010	12098748	7164429.16	11764099.35	9264817.135
2011	6589583	12356789.49	8809202.187	11847761.57
2012	-2022762	9344165.46	10434387.22	8254297.31
2013	-2580616	2283410.265	5555189.59	7320099.875
2014	2233983	-2301689.315	662068.0167	3521238.073
2015	-353657	-173316.555	-789798.42	1055046.855
2016	1365484	940163.41	-233429.8867	-680762.9525
2017	3601126	505913.76	1081936.963	166298.6025
2018	1294391	2483305.005	1537651.153	1711734.208
2019		2447758.24	2087000.183	1476836
2020			1631838.827	1565250.138

Using the four-year moving average, we can predict the balance of trade for year 2019 and 2020 as follows:

Balance of trade forecast for 2019 = (-353656.55 + 12365484.07 + 3601125.94)/4 = \$1,476,836

Balance of trade forecast for 2020 = 1365484.07 + 3601125.94 + 1294390.54)/4 = \$1565250

4.2 Regression Model for Imports, Exports and Balance of Trade

The economic model for imports follows the linear equation (y=mx + c)

$$Q_i = \beta_0 + \beta_{1t} + \mu$$

where β_0 is constant

$\beta_1 = \mathrm{slope}$

 $\mu = {\rm error \ term}$

Q = -279546420.49 + 140963.56t

Regression Statistics	
Multiple R	0.229639232
R Square	0.052734177
Adjusted R Square	0.017650258
Standard Error	5180394.778
Observations	29

ANOVA

	df	SS	MS	F	$Significance \ F$
Regression	1	$4.03376E{+}13$	$4.03E{+}13$	1.503087	0.230783
Residual	27	7.24585E + 14	$2.68E{+}13$		
Total	28	$7.64923E{+}14$			

C	Coefficients	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept -2	279546420	230417966.8	-1.21321	0.235555	-7.52E+08	193232195	-752325036	193232195
X Variable 1 14	40963.5642	114978.0233	1.226004	0.230783	-94951.85	376878.98	-94951.853	376878.98

Economic model for exports

$$T = time$$

$$\mathbf{E} = \mathbf{\beta}_0 + \mathbf{\beta}_{1t} + \mathbf{\mu}$$

E = -5905608030 + 2967149.415t

SUMMARY	OUTPUT
	~ ~ ~ -

$Regression \ Statistics$	
Multiple R	0.918240041
R Square	0.843164772
Adjusted R Square	0.83735606
Standard Error	11096119.78
Observations	29

ANOVA

	df	SS	MS	F	$Significance \ F$
Regression	1	1.78721E + 16	$1.78721E{+}16$	145.1552	2.26477 E-12
Residual	27	3.32434E + 15	1.23124E + 14		
Total	28	2.11964E + 16			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-5905608030	493542571.2	-11.965752	2.649E-12	-6918273739	-4.893E+09	-6918273739	-4.893E + 09
X Variable 1	2967149.415	246276.5818	12.04803718	2.265E-12	2461831.609	3472467.2	2461831.61	3472467.22

Econometric model for balance of trade

$$\mathrm{E}=\beta_{0}+\beta_{1\mathrm{t}}+\mu$$

E = -279546420.5 + 140963.5642t

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.22963923
R Square	0.05273418
Adjusted R Square	0.01765026
Standard Error	5180394.78
Observations	29

ANOVA

Regression1 $4.03376E+13$ $4.0338E+13$ 1.503087 0.230783 Besidual277.24585E+142.6836E+13		df	SS	MS	F	Significance F
Besidual 27 7 24585E ± 14 2 6836E ± 13	Regression	1	$4.03376E{+}13$	$4.0338E{+}13$	1.503087	0.230783
1(2)(0)(1) 12)(0)(1) 14 2.00001 15	Residual	27	$7.24585E{+}14$	$2.6836E{+}13$		
Total 28 7.64923E+14	Total	28	$7.64923E{+}14$			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-279546420	230417966.8	-1.2132145	0.235555	-7.52E+08	193232195	-752325036	193232195
X Variable 1	140963.564	114978.0233	1.22600442	0.230783	-94951.85	376878.981	-94951.853	376878.98

The model has shown that the exports, imports and balance of trade are anticipated to decrease in the near future due to seasonal nature of the country's performance. However, the decrease will not be lower than the previous four years. The limitation found in the regression model is that it does not accurately predict the future behavior of import, export and balance of trade due the scatting nature of the data plots.

5 Conclusion

In nutshell, it is ascertained that Chile has utilized international trade, technology and exposure to the global market; its merchandise has had an upward trend. The study has revealed Chile's imports and exports have been fluctuating due to fluctuation in the prices and unfavorable movements in exchange rates in the global market. The graphs have shown that Chile anticipates an increase in its exports and imports a fact that can be backed up by the model. The increase in the international trade is attributed

to the increase in the number of trade agreements, and political stability that is currently observed across the globe. However, the ongoing pandemic is anticipated to change the pattern if it is not addressed urgently. This is because a good number of workforces has been forced to work from home while others being laid off. International flights and travels have been banned meaning that there is a few imports and exports that are currently taking place.

The regression analysis was employed to forecast the growth rate of imports and exports. It is noted that the growth rate of exports is higher than that of imports and this means that there the country is likely to experience a surplus balance of payment. This is due to the increase in the exports that generate more capital inflow than capital outflow through import of goods and services. Chile being one of the main producers of Fish, Ores, Copper, Fruits, Wood, Beverages, and fruits, is a significant contributor to the well-being of the global economy and its vital role is believed to enhance in the near future given the fact that there is an increase in world demand for such variables (exports and imports). The presence of trade agreements exhibits that there is interdependence between countries which is significant in determining the trade patterns of a country.

References

- Al-Zyoud, H., & Elloumi, F. (2017). Dynamics of Canadian Trade Pattern: A Time-Series Analysis. International Journal of Economics and Finance, 9(3), 115-125.
- Bas, M., & Strauss-Kahn, V. (2014). Does importing more inputs raise exports? Firm-level evidence from France. Review of World Economics, 150(2), 241-275.
- Box, G. E. P., & Jenkins, G. M. (2015). Time Series Analysis: Forecasting and Control. Holder Day, San Francisco.
- Hruzova, K., Rypka, M., & Hron, K. (2017). Compositional Analysis of Trade Flows Structure. Austrian Journal of Statistics, 26, 49-63. <u>http://dx.doi.org/10.17713/ajs.v46i2.569</u>
- Mukhtar, T., & Rasheed, S. (2010). Testing long run relationship between exports and imports: Evidence from Pakistan. Journal of Economic Cooperation and Development, 31(1), 41-58.
- Shahbaz, M. (2012). Does trade openness affect long run growth? Cointegration, causality and forecast error variance decomposition tests for Pakistan. *Economic Modelling*, 29(6), 2325-2339.
- Vollaard, H. (2014). Explaining E uropean Disintegration. JCMS: Journal of common market studies, 52(5), 1142-1159.