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Abstract. This paper seeks to model daily, weekly and monthly stock indices returns using GARCH 
(1,1) model which is expected to reproduce most of the stylized facts of financial time series data which, 
in most cases, are found in different types of market. In addition, the distributional behavior of returns 
as the data changes from daily through to monthly returns is investigated by performing the JB and 
K-S tests. The results indicate evidence of volatility clustering, leverage effects, Gaussianity and
leptokurtic distribution in the stock returns. A key observation is that the monthly returns of the three
indices follow a Gaussian distribution (i.e. as the data changes from daily through to monthly returns
it follows a normal distribution).
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1   Introduction 

Statistical properties of stock prices and market indexes have been studied using data from various markets 
and instruments over the past couple of years. A set of these properties have been observed to be common 
across many instruments, markets and time periods and have been classified as ‘stylized facts’. For instance, 
Cont [9] examined stylized statistical properties of asset returns, which are common to a wide set of 
financial assets, such as heavy tails, leptokurtic distribution, volatility clustering, absence of 
autocorrelations, leverage effects, aggregation Gaussianity, etc. The Autoregressive Conditional 
Heteroskedasticity (ARCH) model with normal innovations first introduced by Engle [11] captured some 
of stylized characteristics of financial assets. To improve the fit of the GARCH and EGARCH models into 
international equity markets, Fernandez and Steel [13)] and Harris et al. [14] used the Skewed Generalized 
Student’s t-distribution to capture the skewness and leverage effects of daily returns. Bollerslev [6], Baillie 
and Bollerslev [1], and Beine et al. [2] have used the Student’s t-distribution to embrace the thick tails 
property of high frequency financial time series data. Further, studies of Mandelbrot [15], Fama [12], Black 
[4], Christie[8], Dowd [10] and Poon [16] indicate that, financial time series data is characterized by 
volatility clustering, leptokurtosis, leverage effects, have fat tails and a greater peak at the mean than the 
normal distribution. In economic time series analysis, it is quite common to develop models and theories 
under the assumption of Gaussianity and apply them to real data. The research findings of Mandelbrot 
[15] indicate that the empirical distributions of daily stock returns differ significantly from the traditional
Gaussian model.

The main focus of this paper is to model the indices returns using GARCH(1,1) model which attempts 
to capture most of the stylized features of return series. Moreover, we investigate the distribution of 
returns by using data of various frequencies. All the parameters are estimated from historical data for 
FTSE100, S&P500 and NSE20 indices from Jan 3, 2000 to Dec 31, 2012. 

This paper is organized as follows. Section 2 provides an overview of the ARCH and GARCH models 
and the data used in this study. Section 3 provides the descriptive statistics and the general discussion of 
the study findings. Finally, section 4 concludes the paper. 

2   Methodology 
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2.1   ARCH Model 

An ARCH model is a stochastic process with autoregressive conditional heteroscedasticity. The 
autoregressive property describes a feedback mechanism that incorporates past observations into the 
present while conditionality implies a dependence on the observations of the immediate past and 
heteroscedasticity means time-varying variance (volatility). The model was first introduced by Engle [11] 
when modeling the United Kingdom inflation. ARCH models are simple models capable to describe a 
stochastic process which is locally non-stationary but asymptotically stationary. If the stochastic process 
exhibits a time dependent variance, i.e. volatility, then the ARCH models are particularly useful and 
therefore have been applied to many different areas of economics such as interest rates, stock returns, 
foreign exchange rates, etc. In an ARCH process, the variance at a time t  depends on some past values 
and it is characterized by a certain number of parameters. An ARCH(p) model assumes that 
 2 2 2

0 1 1,    t t t t t p t pa a a             (1) 

where t  is a sequence of i.i.d. random variables with mean 0 and variance 1, and 0i   for 0i  . 

2.2   GARCH Model 

GARCH-models which refer to generalized autoregressive conditional heteroskedasticity models have been 
widely used in financial and economic modeling and analysis. These models are characterized by their 
ability to capture volatility clustering, and they are widely used to account for non-uniform variance in 
time-series data. 

The GARCH model is based on the assumption that forecasts of variance changing in time depend on 
the lagged variance of capital assets. An unexpected increase or fall in the returns of an asset at time t 
will generate an increase in the variability expected in the period to come. These models were proposed 
by Bollerslev [5] as a useful extension of ARCH model. For a log return series, tr , we assume that the 
mean equation of the process can be adequately described by an ARMA model. Let t t ta r    be the 
mean-corrected log return. Then ta  follows a GARCH(p, q) model if  
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where q  is the degree of GARCH; p  is the degree of the ARCH process, t is a sequence of i.i.d. random 

variables with mean 0 and variance 1, 0 0, 0, 0i j      and 
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We shall note that 0i   for i p , and 0j   for j q . The constraint i j   implies that the 
unconditional variance of ta  is finite, whereas its conditional variance 2

ta  evolves over time. Equation (2) 
reduces to a pure ARCH (p) model if 0q  . The basic and most widespread model is GARCH(1,1), which 
can be expressed as 
 2 2 2

0 1 1 1 1,    t t t t t ta a             (3) 

According to Brook and Burke [7], the GARCH(1,1) is sufficient to capture all the volatility clustering 
that is present in a data. This study therefore applies this model to investigate the volatility clustering 
and other stylized facts of the time series data in question. 

2.3    Jarque-Bera Test 

In statistics, the Jarque-Bera test is a goodness-of-fit test of whether sample data have the skewness and 
kurtosis matching a normal distribution. The test statistic JB is defined as 

 2 21[ ( 3) ]
6 4
nJB s k     (4) 
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where n  is the number of observations (or degrees of freedom in general), s  is the sample skewness and 
k  is the sample kurtosis. If the data come from a normal distribution, the JB statistic asymptotically has 
a chi-squared distribution with two degrees of freedom, so the statistic can be used to test the hypothesis 
that the data are from a normal distribution. The null hypothesis is a joint hypothesis of the skewness 
being zero and the excess kurtosis being zero. Samples from a normal distribution have an expected 
skewness of zero and an excess kurtosis of zero (which is the same as kurtosis of 3). As the definition of 
JB shows, any deviation from this increases the JB statistic. 

2.4   The Kolmogorov-Smirnov Test 

The K-S test is a nonparametric test of the equality of continuous, one dimensional probability 
distributions that can be used to compare a sample with a reference probability distribution (one-sample 
K-S test), or to compare two samples (two-sample K-S test). The K-S statistic quantifies a distance 
between the empirical distribution function of the sample and the cumulative distribution function of the 
reference distribution, or between the empirical distribution functions of the two samples. The K-S statistic 
for a given cumulative distribution function ( )F x  is  
 sup | ( ) ( ) |n x nD F x F x    (5) 
where supx  is the supremum of the set of distances, ( )nF x  is the empirical distribution function of the 
sample for all x . By the Glivenko-Cantelli theorem, if the sample comes from distribution ( )F x , then nD  
converges to zero almost surely in the limit when n goes to infinity. 

2.5   Empirical Data 

In our analysis we focus on the daily, weekly and monthly closing indices as reported in Nairobi Securities 
Exchange for NSE20 share index, FTSE100 index in London and S&P500 index in New-York Stock 
Exchange. Daily, weekly and monthly log-returns, tr , of FTSE100, S&P500 and NSE20 share indexes are 
computed from Jan 3, 2000 to Dec 31, 2012. Let tp  denote the successive closing price observation at 
time t, the continuously compounded (or log) return is defined as 
 1ln lnt t tr p p     (6) 

3   Results and Discussion 

3.1   Descriptive Statistics 

Table 1 summarizes the basic statistical properties of the data. The mean returns are positive except for 
the FTSE100 index and the S&P500 daily observations but close to zero. The returns appear to be 
somewhat asymmetric as reflected by skewness estimates: there are more observations in the left-hand tail 
than in the right-hand tail. All the series returns have heavy tails and show strong departure from 
normality (skewness and kurtosis coefficients are all statistically different from those of the normal 
distribution which are 0 and 3 respectively). The kurtosis and the value of Jarque-Bera (JB) statistic 
decrease as the time scale increases, however, the JB statistics clearly rejects the null hypothesis of 
normality.  

3.2   Empirical Findings and Discussion 

We estimate GARCH(1,1) type model assuming conditional normality. The results of estimating the daily, 
weekly and monthly returns of the three market indices are presented in tables 3. The results indicate 
that the estimated coefficients of the model (  and  ) meet the requirement that  1    and 

0 1 10, 0, 0     , which is a crucial condition for a mean reverting process. This implies that the 
fitted GARCH(1,1) is weakly stationary and that conditional volatilities are mean reverting for all the 
time series and frequencies. Also in the variance equation the first three coefficients   (constant), ARCH 
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term 1( )  and GARCH term 1( )  are highly significant for the three indices returns in daily, weekly and 
monthly observations with the exception that omega ( )  is not significant for monthly observations of 
the three market indices returns. The significance of   and   indicates that lagged conditional variance 
and squared disturbance has an impact on conditional variance, this means that news about volatility 
from previous periods has an explanatory power on current volatility. The GARCH coefficient 1  is found 
to be around 0.9 and thus it’s obvious that large values of 2

1t   will be followed by large value of 2
t , and 

small values of 2
1t   will be followed by small values of 2

t . The coefficient 1  measures the degree to 
which volatility shock that occurs now feeds through into next period’s volatility.  

The value of 1  is high in most of the return series data from the three indices, hence it can be inferred 
that the shocks to conditional variance dies after a long time. In this case we note that volatility is 
persistent. We also note that the sum of 1  and 1  is close to the one which implies that a shock at a 
time t will persist for a long time in the future. 1  is less than 1 . It can be inferred that the volatility 
of the stock market index is affected by past volatility more than by related news from the previous period. 

To study the characteristics of the distribution of the returns of the three markets indices, we plotted 
the empirical probability density functions and compared it with the normal distribution (see figure 1). 
The plots indicate that as the data changes from daily through to monthly, their distribution looks more 
and more like a normal distribution. In particular, the shape of the distribution is not the same at different 
time scales. These results are also confirmed by the results of the Kolmogorov-Smirnov test shown in table 
2 where the null hypothesis that the returns follow normal distribution was rejected for the daily and 
weekly returns but was accepted for the monthly returns of the three markets. 

Table 1. Descriptive statistics for daily, weekly and monthly stock returns 

Market Obs nobs Min Max Mean Std Dev skewness Ex. Kurt J-B test 
FTSE 
100 
Index 

D 3390 -0.093 0.094 -4.8e-5 0.013 -0.143 5.992 5092 
W 678 -0.236 0.126 -9.7e-5 0.026 -1.099 11.50 3898 
M 155 -0.140 0.083 -3.9e-4 0.042 -0.694 0.618 15.5 

S&P 
500 
Index 

D 3268 -0.095 0.110 -6.0e-6 0.014 -0.158 7.321 7323 
W 677 -0.201 0.114  2.5e-5 0.027 -0.768 6.206 1162 
M 155 -0.186 0.102 1.45e-4 0.047 -0.668 1.061 19.8 

NSE20 
Index 

D 3257 -0.052 0.070 1.80e-4 0.009 0.464 7.571 7908 
W  678 -0.128 0.155 8.64e-4 0.027  0.512 5.160  788 
M  155 -0.263 0.178 3.67e-3 0.062 -0.272 2.192 34.9 

 D=daily,      W=weekly   and   M=monthly observations 

 

Figure 1. Empirical vs. normal densities for FTSE100 index returns, daily (left), weekly (centre) and monthly 
(right)  
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Figure 2. Empirical vs. normal densities for S&P500 index returns, daily (left), weekly (centre) and monthly 

(right) 

 

 Figure 3. Empirical vs. normal densities for NSE20 index returns, daily (left), weekly (centre) and monthly (right) 

Table 2. Kolmogorov-Smirnov test for density of returns 

 Normal distribution NIG distribution 
INDEX Observations D- statistic p-value D- statistic p-value 

FTSE100 
Daily 0.0776 < 2.2e-16 0.0381 0.000105 
Weekly  0.0648 0.006775 0.0437 0.1497 
Monthly  0.0777 0.3066 0.1064 0.05999 

S&P500 
Daily 0.0797 < 2.2e-16 0.0471 1.035e-06 
Weekly  0.071 0.002155 0.0392 0.2486 
Monthly  0.0968 0.1095 0.0912 0.152 

NSE20 
Daily 0.0882 < 2.2e-16 0.0465 1.546e-06 
Weekly  0.0777 0.0005621 0.0397 0.2344 
Monthly  0.0892 0.1699 0.0435 0.9308 
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Param
eters 

D
aily 

W
eekly 

M
onthly 

D
aily 

W
eekly 

M
onthly 

D
aily 

W
eekly 

M
onthly 

µ 
3.600e-04 
0.0128* 

9.723e-04 
0.1847 

3.748e-03 
0.1847 

6.166e-05 
0.697 

2.540e-04  
0.7485 

1.452e-03 
0.6059 

-2.262e-5
0.849

4.63e-04 
0.5766 

0.0018 0.7053 

ω 
1.238e-06 
1.05e-4*** 

3.322e-05 
0.0052 ** 

1.103e-04 
0.2091 

1.511e-06 
2.3e-6*** 

4.119e-05 
0.0037** 

6.080e-05 
0.3129 

4.039e-06 
1.3e-7*** 

1.12e-04 3.0e-
4*** 

0.0005 0.1008 

α 
1.056e-01 
<

2e-16*** 
2.561e-01 
5.6e-06*** 

2.199e-01 
0.0114* 

8.568e-02 
<

2e-16*** 
2.109e-01 
5.3e-7*** 

2.409e-01  
0.0046** 

2.138e-01 
<

2e-16*** 
4.5e-01 1.1e-

7*** 
0.2675 
0.0213* 

β 
8.889e-01 
<

2e-16*** 
7.278e-01 

<
2e-16 *** 

7.309e-01 
8.9e-16*** 

9.049e-01 
<

2e-16*** 
7.412e-01 
<

2e-16*** 
7.463e-01 
<

2e-16*** 
7.385e-01 
<

2e-16*** 
4.44e-01 1.1e-

6*** 
0.6109 5.8e-

6*** 
α+

β
0.9945 

0.9839
0.9508

0.9906
0.9521

0.9872
0.9523

0.894
0.8785

Logl
10692.9 

1597.2
281.6

10172.5 
1577.1

271.2 
11459.2 

1599.5
220.9

nl
3.154

2.356
1.817

3.113
2.330

1.750
3.518

2.359
1.425

JB
 

94.71 
0 

499.0 
0 

16.03 
0.0003 

244 
0 

80.90 
0 

7.641 
0.0219 

2618.6 
0 

82.44 
0 

2.046 0.3595 

Q
(10) 

13.18 
0.2139 

10.38 
0.4081 

3.366 
0.9714 

18.20 
0.0516 

7.426 
0.6847 

5.362 
0.8657 

502.4 
0 

76.28 2.7e-12 
30.55 0.0007 

Q
(15) 

17.52 
0.2886 

20.40 
0.1571 

7.195 
0.9520 

27.98 
0.0218 

11.560.7121 
6.441 
0.9714 

523.9 
0 

88.03 2.3e-12 
35.15 0.0023 

LM
 T

est 
17.54 
0.1306 

17.61 
0.1282 

8.322 
0.7595 

28.36 
0.0049 

14.26 
0.2846 

6.869 
0.8661 

13.77 0.3154 
6.244 
0.9033 

16.64 0.1638 

A
IC

-6.306
-4.700

-3.582
-6.223

-4.647
-3.448

-7.034
-4.707

-2.798
B

IC
-6.299

-4.673
-3.503

-6.216
-4.621

-3.370
-7.027

-4.680
-2.720

N
ote: *, ** and***indicate significant at 5%

, 1%
 and 0.1%

 respectively. 
T

he estim
ated G

A
R

C
H

 param
eters are all highly significant. 

Q
 (10) is Ljung-B

ox test at lag 10 and Q
 (15) is Ljung-B

ox test at lag 15 
nl is norm

alized  
Logl is log likelihood 
A

IC
 is the A

kaike Inform
ation C

riterion; 
B

IC
 is the B

ayesian Inform
ation C

riterion; 
JB

 is Jarque-B
era test 
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4   Conclusion 

In this paper, our empirical results provide evidence that the behavior of the three stock indices returns has 
the common characteristics of many daily, weekly and monthly financial time series. The data exhibits 
considerable level of excess kurtosis, which can be related to the time-dependence in conditional variance and 
also the distribution of all return series is relatively asymmetric. As a consequence of these two characteristics, 
all the return series data shows a significant departure from normality and existence of conditional 
heteroscedasticity. All the three series returns exhibit asymmetric behavior in the conditional variance, related 
by many authors to leverage effects. The skewness and leptokurtosis observed in the original series of returns 
can be partly explained by the GARCH model. The study, thus, finds strong evidence of volatility clustering, 
leverage effects and leptokurtic distribution for the indices returns. The results of K-S test provide evidence 
that as the data changes from daily through to monthly returns, the distribution is close to that of normal.  
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