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Abstract. The purpose of this research is to propose a new method for detecting change points with 
an epidemic alternative (in the form of a step function). There are several parametric approaches and 
nonparametric approaches in the literature that can be used for detecting change-points in epidemic 
models. Yan [16] summarized some existing parametric approaches. The approaches summarized in 
Yao’s paper are based on the assumption of known population variances. The proposed test statistic 
in this research does not depend on the assumption of known population variances. This better fits 
the real world situation. Monte-Carlo simulation was used to find the critical values of the test. The 
power study was also based on Monte-Carlo simulation. The simulation result shows that the test 
statistic proposed in this research provides quite decent power compared with other existing 
statistical procedures, especially for the case that the step is large and duration of the epidemic is 
long. In 1997, a likelihood ratio test was proposed by Csorgo and Horvath [24]. Compared with the 
likelihood ratio test, the method proposed in this paper is easier to use by the statistics users. 

Keywords: Change-point, epidemic alternative, power comparison, Monte Carlo simulation, 
unknown variances. 

1   Introduction 

The problem of detecting changes in the characteristics of a random process is referred to as the change-
point problem. This problem has become a fast developing research area in statistics mainly due to its 
important applications and newly developed theoretical and computational methods. Change-point 
problems occur in a wide variety of fields including detecting shifts in production processes, comparing 
and matching DNA sequences, examining the impact of social programs, and studying structural shifts 
in one or more parameters of the models in economics, engineering, political science and other empirical 
sciences. Many authors have considered the single change-point problems for the univariate and 
multivariate normal distributions. Page [1, 2] found a procedure for detecting a single change in the 
distribution of a sequence of independent random variables. The test is based on cumulative sums called 
cusums. Chernoff and Zacks [3] and Kander and Zacks [4] studied sequences of normal random variables 
and found a Bayesian test to detect a change in the mean. Sen and Srivastava [5] and Worseley [6] 
derived tests for the likelihood ratio in the single change situation. Chen and Gupta [7, 8] discussed 
procedures of detecting change-points using the Schwarz information criterion for the normal 
distribution. Gombay and Hovarth [9] derived the asymptotic null distribution of the likelihood ratio 
statistic for the exponential family. The asymptotic non-null distribution for the single change-point was 
derived by Gombay and Hovarth [10]. 

Change-points with epidemic alternatives were formulated by Levin and Kline [11] to model the 
changes over time in the proportion of abortions. In the epidemic change model, the random process is 
assumed to be stable initially, and then at an unknown time point it will exhibit an abrupt change in 
the characteristics, which will continue for an unknown duration before stabilizing again to the initial 
state. The standard normal of a neuron exhibiting a modulated activity during a time period and then 
reverting to its spontaneous activity is an example of this model, which was described by Commenges, 
et al [12]. Bromeling and Tsurumi [13] described a number of applications of this model in econometrics. 
Later, Siegmund [14, 15] and Yao [16] proposed some test statistics and large deviation approximations 
to the significance levels and powers, for the normal distribution. Furthermore, some semiparametric 
tests for change-points with epidemic alternatives were recommended by Guan [17]. 
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The problem considered in this study is to detect an epidemic alternative in the mean value of a 
sequence of normally distributed independent random variables. Yao [16] summarized several test 
statistics for detecting change-points for epidemic alternatives in the literature. The test statistics are (i) 
Levin and Kline’s statistic; (ii) the semi-likelihood ratio statistic; (iii) the test derived using the idea of 
the likelihood ratio test; (iv) the score-like statistic, which can be regarded as an analogue of Pettitt’s 
method [18] in testing an epidemic alternative; and (v) the recursive residual statistic, which is inspired 
by Brown, Durbin and Evans [19]. Approximations to the significance levels have been developed by 
Hogan and Siegmund [20], Siegmund [14, 21] and Yao [16, 22, 23]. A more general parametric likelihood 
test was proposed by Csorgo and Horvath [24]. The likelihood ratio test is generally believed to be the 
most powerful test. The test can be adopted for the epidemic model mentioned in this paper as a special 
case.  

A new approach for detecting epidemic change is proposed in this paper. Critical values of the 
proposed test statistic are obtained using Monte Carlo simulation. Power study for the test statistic is 
conducted to compare the performance of the proposed test statistic with the test statistics mentioned 
in Yao [16]. Compared with the likelihood ratio test, the method proposed in this paper is easier to use 
for the statistics users. 

2   Model and Assumptions 

Let 1 2, , , nX X X  be a sequence of normally distributed independent random variables. Consider the 
following model: 
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for 1 .p q n≤ < <  Here aµ µ δ= + ; µ  and δ  are unknown parameters; 1, , ne e  are independent 
and identically distributed (i.i.d.) random variables with ( ) 0iE e =  and 20 ( )iVar e σ< = < ∞ . This 
model describes the situation that the normal state with the mean value µ  runs up to the 

thp observation, then it changes to the epidemic one with the mean value aµ µ δ= +  at the 
( 1)thp + observation and stays at this level through the thq  observation before the normal state is 
restored at the ( 1)thq +  observation.  

The test proposed in this paper is to be used to check if an epidemic change has occurred in an 
unknown time period. More specifically, the hypotheses can be described as follows: 
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Here µ  and δ  play the role of nuisance parameters. To simplify the discussion, only one-sided 
alternative will be considered, i.e., it is assumed that the sign of δ  is known, say, 0δ > . The method 
can then be used for a two-sided test without any technical difficulties. The two-sided case will be 
mentioned and commented later. 

The test statistics reviewed in Yao [16] assume that the variance of the underlying distribution is 
known. This is not acceptable to practitioners. To resolve this problem, point estimation was used to 
estimate the population variance. The point estimation is, however, based on samples that contain the 
effect of the alternative hypothesis. This may cause the point estimator of the variance to deviate from 
the real value significantly. Therefore, a new approach for detecting epidemic change which can bypass 
point estimation of the population variance is desired, and it will be introduced in the next section.  

3   New Test Statistic 

Let 1 2, , , nX X X  be a sequence of independent and normally distributed random variables. Among 

182 Journal of Advanced Statistics, Vol. 1, No. 4, December 2016 

JAS Copyright © 2016 Isaac Scientific Publishing



them, the thk  random variable has mean kµ  and variance 2σ . It is desired to test the hypotheses 
described in (2). According to model (1),  

 
1, , , 1, ,

1, , .i
a

i p q n
i p q

µ
µ

µ µ δ
 = +=  = + = +

 



  (3) 

It should be mentioned that δ  is an unknown parameter. In practice, no information about the 
locations of the start-point and end-point of the epidemic alternative will be given. It means that both 
p  and q  are unknown. It is reasonable to assume that ( ),p q  has equal chance to fall at any possible 
points 1, , 2p n= −  and 1, , 1q p n= + − . In order to simplify the discussion in the study, only a 
one-sided alternative is considered, for which it can be assumed that the sign of δ  is known, say 0δ > . 

Let 1 2, , , nX X X  be a sequence of independent random variables, and let i  and j  be positive 
integers satisfying 1 .i j n≤ < <  Denote  
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Now suppose that 0i  and 0j  are two positive integers such that 
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Here the selected ( )0 0,i j  can actually serve as a point estimate of ( ),p q . Suppose also that 
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which is the integer part of 
( )0 0

2
n j i− −

. The test statistic for detecting the epidemic alternative can 

then be defined as 
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It can be seen that the distribution of the statistic T  does not depend on the parameters µ  and 2σ  
under the null hypothesis 0H . Therefore, it is unnecessary to assume that the variance 2σ  is known. 
 Theoretically speaking, it is almost impossible (except a zero-probability event) that more than one 
pair of ( )0 0,i j  can be found such that the values of 

0,oi jR  defined in (10) are the same. This is because 
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the underlying distribution is assumed to be a normal distribution which is a continuous distribution. 
However, in practice, one may encounter the above situation because of the fact that people cannot keep 
an infinite number of decimal places for their data. If that is the case, the authors would suggest that 
both pairs (or even more pairs although the probability will be much smaller) be used to calculate the 
value of T  in (12). Then compare the maximum value of T  with the critical value in Table 1. Similar 
approach can be used for the point estimates of 0p  and 0q . When more than one pair of ( )0 0,i j  are 
found such that the values of 

0,oi jR  defined in (10) are the same, one might use the smallest value of 0i  

as the point estimate of 0p , and use the largest value of 0j  as the point estimate of 0q .  

Table 1.  Values of Cα  when  0.05α =   

n Cα  n Cα  n Cα  
20 5.79 47 7.58 74 9.16 
21 5.82 48 7.62 75 9.22 
22 5.89 49 7.70 76 9.26 
23 5.93 50 7.78 77 9.30 
24 6.02 51 7.83 78 9.35 
25 6.10 52 7.89 79  9.39  
26 6.15 53 7.95 80 9.47 
27 6.23 54 8.00 81 9.51 
28 6.33 55 8.07 82 9.58 
29 6.40 56 8.15 83  9.61  
30 6.44 57 8.19 84  9.69  
31 6.52 58 8.25 85  9.73  
32 6.56 59 8.32 86 9.77 
33 6.65 60 8.38 87 9.80 
34 6.73 61 8.43 88 9.85 
35 6.77 62 8.47 89 9.88 
36 6.86 63  8.52  90 9.93 
37 6.91 64 8.60 91 9.99 
38 7.00 65  8.68  92  10.02 
39 7.06 66 8.73 93 10.07 
40 7.12 67 8.77  94  10.11  
41 7.19 68 8.82 95  10.18  
42 7.27 69 8.88 96 10.22 
43 7.33 70 8.92 97 10.30 
44 7.39 71 8.98 98  10.37  
45 7.45 72 9.05 99 10.41 
46 7.49 73 9.11 100 10.46 

 
In fact, there are several different ways to define the denominator in (12). For instance, the following 

test statistic was studied:  
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This test statistic is similar to the test statistic defined in (12) except that it has a different 
denominator. When the test statistic *T  is used, one may have some concern about the effect of 
possible outliers. In the next section, statistical simulation will be conducted to compare the power of 
the test statistics T  and *T . 
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For the two-sided alternative hypothesis in a more general situation, the restriction 0δ >  will be 
removed. Some modification is needed in (9). Actually, the following can be used to replace the 
expression of ,i jR  in (9) 
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The test statistics in (12) and (13) can be defined in the same way. Upper critical values of T  can be 
obtained by Monte Carlo simulation. The upper critical values Cα  for different values of n  are listed 
in Table 1 where 0.05α = . 

4   Example and Power Study 

To illustrate the use of the statistical test provided in this research, the following flu data set is used. 
Example 1. The numbers of newly reported flu cases were recorded weekly in Mexico between June 
2005 and May 2006. The data are listed in Table 2. 

Table 2. Mexico flu data 

Date Number of New Cases  Date Number of New Cases 
2005-06-05 740  2005-12-04 1407 
2005-06-12 710  2005-12-11 1393 
2005-06-19 713  2005-12-18 1472 
2005-06-26 654  2005-12-25 1540 
2005-07-03 727  2006-01-01 1397 
2005-07-10 690  2006-01-08 1383 
2005-07-17 748  2006-01-15 1475 
2005-07-24 664  2006-01-22 1310 
2005-07-31 690  2006-01-29 1222 
2005-08-07 698  2006-02-05 1169 
2005-08-14 641  2006-02-12 1064 
2005-08-21 641  2006-02-19 1137 
2005-08-28 630  2006-02-26 1131 
2005-09-04 811  2006-03-05 1069 
2005-09-11 786  2006-03-12 1088 
2005-09-18 855  2006-03-19 1038 
2005-09-25 845  2006-03-26 950 
2005-10-02 822  2006-04-02 980 
2005-10-09 877  2006-04-09 880 
2005-10-16 948  2006-04-16 933 
2005-10-23 1027  2006-04-23 844 
2005-10-30 1180  2006-04-30 855 
2005-11-06 1294  2006-05-07 869 
2005-11-13 1279  2006-05-14 909 
2005-11-20 1311  2006-05-21 894 
2005-11-27 1304  2006-05-28 823 

Data Source: Google Flu Trends (http://www.google.org/flutrends) 
Suppose the model proposed in this paper is used to fit the data. It can be found that the value of 
,i jR  reaches its maximum 5894.3462 when 0 20i =  and 0 42j = . Then the value of the test statistic in 

(12) is 32.2565 which is much higher than the upper critical value 7.89 found in Table 1. Thus one may 
reject the hypothesis that no epidemic change in means had occurred, and conclude that there was a 
shift in the means at level of significance 0.05.  

Monte-Carlo simulation has been carried out to study the power of the statistical procedures using T  
and *T . To compare the power of T  and *T  with 1 2 3 4, , ,Z Z Z Z  and 5Z  mentioned in Yao [23], one 
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hundred thousand pseudo-random samples were used for each triplet ( ), ,p q δ . Here ,p q  and δ  were 
defined in (2). The selection of  ( ), ,p q δ  is the same as the one used in Yao [16]. To keep the table size 
reasonable, only the case of sample size 60n =  and significance level 0.05α =  is considered. Table 3 
lists the result of power comparison for the test statistics T  and *T  with 1 2 3 4, , ,Z Z Z Z  and 5Z  
described in in Yao [16]. The selected value of 0δ  in the power comparison was 0 0.2δ =  for both 1Z  
and 2Z . The selected values of ( )0 1,n n  in the power comparison for 3Z  were ( )1,59  and ( )6,54 . In 

the power comparison, the maximum likelihood estimator  ( )22

1

1 n

i
i

X X
n

σ
=

= −∑  to estimate the 

population variance 2σ  when the test statistics 1 2 3 4 5, , , ,Z Z Z Z Z  were used. 

Table 3. Power comparison; 60n = , 0.05α =   

δ   q p−   T   *T  1Z  

0 0.2δ =  
2Z  

0 0.2δ =   

3Z  

0 1n =  

1 59n =  

3Z  

0 6n =   

1 54n =   
4Z  

5Z  

0 6n =  
p q n+ =   

0.8 
6 (54) 

0.14 (0.16) 0.13 (0.18) 0.13 (0.12) 0.12 (0.18) 0.12 (0.25) 0.14 (0.21) 0.12 (0.17) 0.14 (0.12) 
1.2 0.25 (0.25) 0.21 (0.29) 0.25 (0.13) 0.21 (0.19) 0.28 (0.23) 0.32 (0.23) 0.20 (0.18) 0.33 (0.20) 
1.6 0.41 (0.33) 0.33 (0.43) 0.43 (0.09) 0.33 (0.13) 0.54 (0.15) 0.61 (0.16) 0.29 (0.12) 0.60 (0.33) 
0.8 

10 (50) 
0.27 (0.31) 0.22 (0.33) 0.29 (0.16) 0.25 (0.23) 0.21 (0.23) 0.27 (0.26) 0.25 (0.23) 0.26 (0.19) 

1.2 0.53 (0.54) 0.43 (0.58) 0.58 (0.15) 0.50 (0.22) 0.51 (0.20) 0.60 (0.23) 0.47 (0.21) 0.56 (0.35) 
1.6 0.81 (0.77) 0.69 (0.81) 0.84 (0.07) 0.76 (0.11) 0.80 (0.10) 0.87 (0.11) 0.71 (0.11) 0.84 (0.55) 
0.8 

20 (40) 
0.58 (0.61) 0.51 (0.60) 0.57 (0.36) 0.56 (0.46) 0.38 (0.30) 0.47 (0.37) 0.56 (0.46) 0.40 (0.33) 

1.2 0.91 (0.92) 0.85 (0.91) 0.88 (0.40) 0.86 (0.52) 0.70 (0.30) 0.80 (0.39) 0.86 (0.53) 0.76 (0.62) 
1.6 0.99 (0.99) 0.98 (0.99) 0.98 (0.21) 0.97 (0.30) 0.90 (0.13) 0.94 (0.19) 0.97 (0.31) 0.95 (0.85) 
0.4 

30 
0.25 0.24 0.2 0.24 0.14 0.18 0.24 0.14 

0.8 0.69 0.64 0.56 0.61 0.38 0.48 0.62 0.41 
1.2 0.96 0.94 0.81 0.84 0.59 0.71 0.84 0.75 
0   0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Cα    8.38 3.21 9.32 10.30 3.60 3.40 11.65 3.24 

 
The row at the bottom of Table 3 provides the cutoff point Cα  for each test. The simulated values 

for the significance level are also reported, from which one can find that approximately 5% of the sample 
points fell in the rejection region for each test when there was no epidemic change, i.e. under the null 
hypothesis. Here 0δ =  means the situation is under the null hypothesis 0H . The columns of Table 3 
are organized as follows: 

(i). Column 1 contains epidemic change values 0δ > , 
(ii). Column 2 gives durations of the epidemic state q p− , 
(iii). Columns 3 and 4 list the power of the proposed test statistics T  and *T  for certain 

different situations, 
(iv). Columns 5 through 10 list the power of those test statistics reviewed in Section 1 for several 

different situations. 
Columns 7 and 8 in Table 3 involve the test statistic 3Z  with different choices of 0n  and 1n . Since 
the power of 5Z  depends on ( ),p q  not only through q p− , the results were reported merely for a 
special case that the epidemic state appears in the middle, i.e., p q n+ = . 

The powers of 1 2 3 4, , ,Z Z Z Z  and 5Z  are not symmetric with respect to the duration of the epidemic 
state, i.e. an epidemic alternative with duration q p−  may have different power from an alternative 
with duration ( )n q p− − . Thus, the figures within parentheses in the columns of 1 2 3 4, , ,Z Z Z Z  and 5Z  
exhibit the powers for the duration values greater than 30. Roughly speaking, for a given epidemic 
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change value δ  , the powers of 1 2 3 4, , ,Z Z Z Z  and 5Z  corresponding to certain durations 2q p n− <  
are considerably greater than those corresponding to durations ( )n q p− −  except for the special cases 
with δ  very small and q p−  near zero. The reason of the above fact is that the tests 1 2 3 4, , ,Z Z Z Z  

and 5Z  have used the point estimator 2σ  as the population variance 2σ  during standardization of 

the random samples. The point estimator 2σ  is based on the sample data contaminated by the 
epidemic alternative. This will, of course, affect the accuracy of the estimation, and affect the power of 
the tests. Therefore, for a given epidemic change value δ , the powers of the tests 1 2 3 4, , ,Z Z Z Z  and 5Z  
would be affected. For the same reason, the power of 1 2 3 4, , ,Z Z Z Z  and 5Z  would also be subjected to 
the effect of epidemic change value δ . It is obvious that, for a given q p−  and ( )n q p− −  in Table 3, 
the difference between the power values of 1 2 3 4, , ,Z Z Z Z  and 5Z  outside the parentheses and those 
between the parentheses increase as the epidemic change value δ  increases, say from 0.8 to 1.2 and 
then 1.6. Furthermore, an increase in the epidemic change value δ  would increase the powers of 

1 2 3 4, , ,Z Z Z Z  and 5Z  for a certain duration q p−  less than 2n ; whereas for a certain epidemic 
duration greater than 2n , i.e. a certain value between the parentheses in column 2 such as 40, 50 or 54, 
the simulated results in columns 4, 5, 6, 7 and 8 show that the power values of 1 2 3, ,Z Z Z  and 4Z  
between the parentheses tend to decrease when the epidemic change value δ  increases. When the 
epidemic change value δ  increases to 1.6 or more, for some duration close to n, the powers of 1 2 3, ,Z Z Z  
and 4Z  would become even tiny.  

One can intuitively imagine that, when the epidemic state has longer duration or when the epidemic 
change is stronger, it should be easier for statistical procedures to detect the existence of the epidemic 
alternative. In other words, the power of a statistical test should be higher when the duration of the 
epidemic state is longer or when the value δ  is bigger. However, Table 3 shows that the performance 
of 1 2 3 4, , ,Z Z Z Z  and 5Z  is not as good as expected.  

To apply those statistical test procedures described in Section 1, some additional conditions or 
assumptions are needed. These conditions or assumptions will restrict the usage of those procedures. 
Some cases have been described by Yao [16]. For instance, there is an additional parameter 0δ  in the 
expressions of test statistics 1Z  and 2Z . Here 0δ  is taken as the smallest increment δ  in means 
which is considered important to detect. Presumably an increase in the value of 0δ  would increase the 
power of 1Z  when q p−  is near zero, and also that of 2Z  when q p−  is near zero; but it would 
decrease the power of 1Z  when q p−  is large, and also that of 2Z  when q p−  is near 2n . Another 
example is that before using the test statistic 3Z , parameters 0n  and 1n  should be preset such that 

0 1n j i n≤ − ≤ . From Table 3, it can be seen that the test statistic 3Z  with 0 6n =  and 1 54n =  has 
greater power than 3Z  with 0 1n =  and 1 59n = . The case with the recursive residual statistic 5Z  is 
more complicated. Some other simulation shows that, for fixed values of δ  and q p− , the power will 
increase as the value of q p+  increases. 

As mentioned above, the power of the test procedures reviewed in Yao [16] drops from the case 
6q p− =  to the case 54q p− =  for a fixed value of δ . This does not fit the real world situation. It 

can be seen from the third and fourth columns of Table 3 that for a given value of epidemic change δ  
(e.g. 0.8, 1.2, or 1.6), the powers of test statistics T  and *T  with some epidemic duration 2q p n− <  
(the value outside the parentheses in column 3) are closer to the powers of the tests with corresponding 
epidemic duration ( ) 2n q p n− − >  (the values inside the parentheses). In other words, the power of 
T  or *T  is more symmetric with respect to the duration of the epidemic state. It means that an 
epidemic alternative with duration q p−  possesses a similar power to an alternative with duration 

( )n q p− − . On the other hand, for a fixed duration q p− , an increase of the value of epidemic change 
δ increases the powers of tests T  and *T . Additionally, when the epidemic duration q p−  is closer 
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to 2n , the power of tests T  and *T  would become greater. These better fit the real application 
situation. 

Comparing the proposed test statistics T  and *T  with 1 2 3 4, , ,Z Z Z Z  and 5Z  on their performance, 
it can be found T  and *T  provide quite decent power in many cases. Especially, when the epidemic 
change δ  is not very small, say 1.2, and the epidemic duration q p−  is around or greater than 2n , 
the performance of T  and *T  is better than the rest test statistics. 

The following example shows how the method presented in this paper and the existing methods 
described above perform when they are used to find point estimates of p  and q  . 
Example 2. A computer simulated random sample of size 30 was generated from a standard normal 
distribution. To simulate the epidemic shift on the means, 13 observations starting from observation 11 
were artificially raised by 1δ = . The following is the data set after 1δ =  was added to observations 
11 to 23: 
−1.37, 0.49, −1.31, 0.88, –0.15, 0.26, 1.12, −0.51, 0.25, −1.49, 0.27, 2.04, 0.24, 1.99, 0.13, 1.03, –1.20, 
0.89, 2.83, 0.32, 0.74, 1.66, 1.42, −1.33, 0.66, 0.62, −0.05, −1.35, −0.69, –0.04. 

Table 4 shows the point estimates of p and q when the method described in this paper and the 
methods based on 1 2 3 4 5, , , ,Z Z Z Z Z  are used. It can be found that the estimates are quite close to each 
other except the case when 1Z  is used. It should be mentioned that the value of 0δ  is assumed to be 
known, i.e., 0 1δ = . 

Table 4. Point estimates of p  and q  in Example 2 

Method p̂  q̂  Max Value 

,i jR
 

11 23 ,max 8.718i jR =
 

1Z
 

17 23 1max 3.174Z =
 

2Z
 

11 23 2max 5.118Z =
 

3Z
 

11 23 3max 3.249Z =
 

4Z
 

11 23 4max 8.718Z =
 

5Z
 

10 23 5max 2.730Z =
 

 

4   Conclusion and Discussion 

A new method for detecting change-points with epidemic alternative is studied in this research. Since 
this method is independent of the population mean µ  and the population standard deviation σ , it is 
unnecessary to assume that the variance is known. The method can then be used to obtain insight into 
more general problems. Moreover, by numerical comparison with other five test statistics summarized in 
Yao [16], the statistical tests presented in this study provide quite decent power, especially for the case 
that the step is large and duration of the epidemic is long. Comparing test statistics T  and *T , the 
power of T  is slightly better than *T . Also it is possible that the test statistic *T  could be affected 
by outliers. Therefore, the proposed test T  should be recommended to practitioners for detecting 
epidemic change in means.  

As mentioned in Section 1, a more general parametric likelihood test was proposed in Csorgo and 
Horvath [24]. For the model discussed in this paper, the likelihood ratio test is equivalent to  

 
 ( ) ( )

1/2

1
,

1maxLR q p np q n
p q

n q pT S S S
q p n q p nσ≤ < ≤

   −= − −    − − +   
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∈
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− ∑ . 

It is generally believed that the likelihood ratio tests usually have competitive power. The problem for 
the likelihood ratio test is that the computation is relatively lengthier. Statistics users may use the 
method presented in this paper if they need an easy test for detecting possible mean shift in the 
epidemic models.  
 The method used in this paper can be used for some models similar to the epidemic model. For 
examples, the models with iX being defined as  

 
1, 2, ,

1, 2, ,
i

i
a i

i p
X

i p p n
µ ε
µ ε
 + ==  + = + +





  

or 

 
1, 2, ,

1, 2, , .
a i

i
i

i p
X

i p p n
µ ε
µ ε
 + ==  + = + +





  

These two models will not be appropriate models to fit epidemic disease data. However, they might be 
used in some other application areas. The authors hope the current paper will attract researchers to 
make contribution to those areas. 
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