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Abstract To determine the genes that are differentially expressed between samples in microarray
experiments, traditionally the expression levels were assessed by taking the intensity levels at a spot
on the array and flagging the gene if the magnitude of the fold change exceeded a threshold. Recently,
however, there has been much effort to improve the methodology by incorporating the variability
of the intensity ratios. While the Student’s t-test and several of its variants have been proposed
by several authors, a methodology that has found widespread popularity is the application of the
mixture model in a hierarchical approach whereby the mean of the distribution of the normalized
log ratios is assumed to be a random variable having a mixture of two components. One component
is a point mass distribution concentrated at zero to represent the non-differentially expressed genes
and another component is a suitable distribution with zero mean to represent the differentially
expressed genes. The normal and the Laplace distributions have been previously suggested for the
differentially expressed genes component of the mixture. But, once again, the symmetry assumption
can make these distributions unsuitable. Here, we take a more general approach and apply the
beta-normal model to describe the distribution of the mean of the differentially expressed genes.
The advantage of this approach is that we no longer assume symmetry for the distribution and
let the data determine its shape. We show that our approach includes the earlier results based on
normality assumption as a special case. Simulation results demonstrate that there are advantages in
using the more general beta-normal distribution. An example with a microarray experimental data
is utilized to provide further illustration.
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1 Introduction

In recent years, microarray experiments have received an increasing amount of attention in scientific
research. This new technology allows the scientist to simultaneously examine the expression levels of
thousands of genes. Changes in the expression levels across multiple samples provide useful information
that can be helpful in generating hypotheses relating gene expression levels to other characteristics.
Consequently, microarray experiments have become an important tool for investigation of the molecular
basis of many diseases. In most cases, the experiment is repeated under two different conditions such as
treatment versus control with the goal of identifying the genes that are differentially expressed under the
two conditions. A challenging statistical problem that has evolved in this area has been the development
of a methodology to detect a statistically significant difference in the intensity levels of genes. The oldest
and the simplest method for identification of differential expression in genes is the ’Fold Change’ method
([1]), where two genes are declared as being differentially expressed if the log intensity levels differ by
more than a fixed, but arbitrary value. Thus if for example the cut-off value is selected to be a two-fold
difference, then genes under the two experimental conditions are differentially expressed if the expression
level of one is at least twice as the other. The fold change method has received much criticism from the
statistical community since it does not account for variability among genes and thus does not have any
statistical properties. Moreover, if the data are not appropriately normalized, the fold change method is
subject to severe bias. The t-test, on the other hand, has been considered as a simple alternative to the
fold change method since it accounts for variability and has well known statistical properties ([2]). In
replicated experiments, one can estimate the variance for each gene and use it in the calculation of the
t-score. A major problem, however, is that with only a small number of replicates, the variance can be
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grossly underestimated, leading to erroneous results and large type I error. An improved estimate of the
variance may be obtained if the variability across all genes is used. But, that would entail the assumption
of equal variance across genes, and by ignoring variability across genes, the t-test will effectively be
equivalent to the fold change method ([3]).

A modification of the t-test called the S-test was introduced by [4], where the authors suggested
adding a small positive constant penalty factor to the denominator of the gene-specific t-test. This penalty
factor was to be selected as the 90th percentile of the gene specific standard deviations. In what became
known as the SAM (Significance Analysis of Microarray) test, [5] proposed choosing the penalty factor
so that the coefficient of variation of the absolute values of the t scores is minimized. [6] introduced the
use of distribution mixtures for analyzing the microarray gene expression data and since then, a large
number of papers have considered different mixture models for various aspects of statistical analysis of
microarray data. One approach is to use a statistical test of hypothesis such as the t-test or the SAM test
for each gene and model the p-values as a mixture of a uniform and Beta distributions. This approach
was adopted by [7]. Another approach is to assume a hierarchical structure in which the log intensity
ratio is modeled as a Normal distribution for which the mean is assumed to follow a mixture model. The
B test, introduced by [8] proposed the use of a Normal mixture for detecting differentially expressed genes.
The test uses the log posterior odds to rank the genes. The method combines information across many
genes and is proved to be more stable than the t-test. [9] noted that the assumption of normality for the
components of the mixture is quite strong and in many cases not realistic. They suggested the use of a
Laplace distribution as a long-tailed alternative to the Normal and modeled the mean relative expression
levels as a Laplace mixture. [10] considered the numerical comparison of the efficiency of several gene
selection criteria. More recently, [11] also note that the assumption of normality for the distribution
of the gene expression levels may not be true and moreover, all the genes may not have a common
distribution. They suggest the use of a generalized logistic distribution of type II whereby the genes are
partitioned into several groups based on their expression levels. A test is then derived for detecting genes
with differential expression levels. Here, we explore the use of the Beta-Normal distribution to model the
gene expression data. Following [8] and [9], we also take a distribution mixture approach. But, where
these authors assume normality or the Laplace distribution to express the distribution of the mean of the
differentially expressed genes, we use a Beta-Normal. We believe that due to the generality and flexibility
of this model, a more realistic interpretation of the data may be obtained. The advantage of our approach
is that we let the data determine the shape and the level of skewness that best describes the expression
levels of the differentially expressed genes. The properties of the Beta-Normal distribution will be briefly
described in the next section. In Section 3, we describe our modeling procedure and discuss the parameter
estimation in Section 4. Section 5 is devoted to a simulation study to demonstrate our methodology and
compare it to similar methods. In Section 6, an example using a data set will be presented for illustration.

2 Beta-Normal Distribution

For a cumulative distribution function G(.), a new general class of distributions can be defined as

F (x) = 1
B(α, β)

∫ G(x)

0
θα−1(1− θ)β−1dθ, α > 0, β > 0, (1)

where B(α, β) is the Beta function given by

B(α, β) = Γ (α)Γ (β)
Γ (α+ β)

and
Γ (α) =

∫ ∞
0

tα−1e−tdt.

[12] used a normal distribution with mean µ and standard deviation σ for G(.) and called the resulting
distribution the Beta-Normal distribution. Thus, from (1), the density of the Beta-Normal distribution is
given by

f(x;µ, σ) = 1
σB(α, β)

{
Φ

(
x− µ
σ

)}α−1{
1− Φ

(
x− µ
σ

)}β−1
φ

(
x− µ
σ

)
(2)
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where Φ(.) and φ(.) are respectively the CDF and the PDF of a standard Normal distribution. Note that
in the special case α = β = 1, the normal distribution is resulted. An equivalent representation of the
Beta-Normal distribution is as follows. Define the random variable X as

X = Φ−1(u)

where u is a number between 0 and 1. It is well-known that if u is the realized value of a uniform U(0, 1)
distribution, then X is a standard Normal variable . Now, more generally, if u is the realization of a Beta
random variable with parameters α and β, then the resulting random variable X has a Beta-Normal
distribution, where, as before, in the special case α = β = 1, normality is derived. This latter representation
is particularly useful for simulation of Beta-Normal variables. [12] discuss several interesting properties
of the Beta-Normal distribution some of which are worth mentioning here. First, the distribution is
symmetric about µ when α=β, becoming positively skewed when α > β and negatively skewed when
α < β. This property is particularly useful for modeling gene expression levels since in practice, estimates
of α and β can determine the type and degree of skewness in the fitted distribution. The mean of the
Beta-Normal distribution is an increasing function of α and a decreasing function of β while the standard
deviation of the distribution is a decreasing function of both α and β. The kurtosis is an increasing
function of α for a fixed β < α and a decreasing function of β for a fixed α < β. [12] also derive a
closed form expression for the first moment of the Beta-Normal distribution and evaluate it for some
specific integer values of α and β. [13] also consider the moments of Beta-Normal distribution and derive
a general expression for moments of the distribution when α and β are integers. The bimodality property
of the Beta-Normal distribution is discussed in [14]. They show that the distribution becomes bimodal
for certain values of parameters α and β. While analytical solutions for values of α and β for which
bimodality occurs cannot be obtained, the authors show numerically that generally, bimodality occurs for
values of α and β below 0.214. Interestingly, however, the modality of the distribution is independent of
the parameters µ and σ. Note also that when α = 2 and β = 1, the skew-normal distribution (Azzalini,
1985) with shape parameter of 1 is resulted. Beta-Normal distribution has also been successfully used in
some applications. For example, [15] utilized this distribution to model dose-response data and estimate
the risk in toxicological experiments. A density function plot using different choices of α and β with same
µ = 2 and σ = 1 can be seen in Figure 1.

3 Modeling Mean Expression Levels

Let Xij , i = 1, . . . , N, j = 1, . . . , ni be the normalized log ratio of the expression levels in the two
conditions for gene i with ni replications. Assume that Xij is a random variable from a Normal distribution
with mean µi and variance σ2

i for i = 1, . . . , N . Following [8], for the gene i we define an indicator random
variable Ii which is equal to 1 if the gene is differentially expressed under the two conditions and takes the
value 0 if the gene is not differentially expressed. If a gene is differentially expressed, then µi is assumed to
have a distribution with mean 0. Otherwise, if the gene is not differentially expressed, its mean expression
level is zero. Hence, if p is the proportion of differentially expressed genes, then µi can be regarded as a
random variable having a mixture of two distributions pf(µi; 0,

√
vσi) + (1− p)δ(0) where δ(0) denotes

the point-mass density with mass at 0 and f(µi; 0,
√
vσi) is a density function with mean 0 and standard

deviation
√
vσi, where v is a hyper-parameter expressing the dependence between the priors for µi and

σi. Now, [8] propose the use of Normal density for f(µi; 0,
√
vσi). Noting that the Gaussian variation

is an exception rather than the rule in practice, [9] suggest the use of Laplace distribution as a long
tailed alternative to normality. Here, we use the Beta-Normal family introduced in the previous section
to describe the distribution of µi. Thus if we let the prior distribution of τi = σ−2

i be gamma,

g(τi) = 1
Γ (b)a

bτ b−1
i exp{−aτi}. (3)

Then, we have
fIi=0(µi) = δ(0),

and

fIi=1(µi|τi) =
√
τi√

vB(α, β)

{
Φ

(
µi
√
τi√
v

)}α−1{
1− Φ

(
µi
√
τi√
v

)}β−1
φ

(
µi
√
τi√
v

)
,
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Figure 1. A density plot of Beta-Normal distribution using different values of α and β with µ = 2 and σ = 1

where δ(.) is the Dirac’s delta function, for i = 1, 2, . . . , N . Applying the empirical Bayes method approach
to calculate the log posterior odds, we have

BNi = log âĄą
{
P (Ii = 1

∣∣Xi)
P (Ii = 0

∣∣Xi)

}
= log âĄą

{
p

1− p
fIi=1(Xi)
fIi=0(Xi)

}
(4)

as the test statistic, where Xi = (Xi1, . . . , Xini
). We show in Appendix 1 that the statistic BNi can be

written as

BNi = log âĄą

 p

1− p

[
a+ ni

2 (S2
i + X̄2

i )
]b+ ni

2

√
2πvB(α, β)Γ (b+ ni

2 )
×

∫ ∞
0

τ
b+ ni

2 −
1
2

i exp
{
−τi

[
a+ ni

2 S
2
i + niX̄

2
i

2(1 + vni)

]}∫ ∞
−∞

{
Φ

(
µi
√
τi√
v

)}α−1{
1− Φ

(
µi
√
τi√
v

)}β−1
×

exp
{
− (1 + vni)τi

2v

[
µi −

vniX̄
2
i

1 + vni

]2}
dµidτi

)
(5)

for i = 1, . . . , N , where S2
i = 1/ni

∑ni

j=1(Xij − X̄i)2 and X̄i = 1/ni
∑ni

j=1Xij . Note that (5) is a direct
generalization of the statistic B derived by [8]. Indeed, in Appendix 2 we show in the special case when
α and β are both equal to 1, BN , given by (5), collapses to the B statistic. Thus the extra parameters
make BN much more flexible and we believe more suitable since we are getting away from the normality
assumption of the data.

4 Parameter Estimation

Suppose that for each gene i, ni, i = 1, . . . , N is the number of replications of the experiment. Then,
if Xij , j = 1, . . . , ni, i = 1, . . . , N denotes the normalized log ratio of the expression levels for the j-th
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replication of the i-th gene, we have

f(Xi1, . . . , Xini
|p, v, α, β, a, b) =

∫ ∞
∞

∫ ∞
0

f(Xi1, . . . , Xini
|µi, τi)f(µi|τi)g(τi)dτidµi, (6)

where in (6),

f(Xi1, . . . , Xini |µi, τi) =
( τi

2π

)−ni
2 exp

−
ni∑
j=1

τi(xij − µi)2

2

 ,

and

f(µi|τi) =
p
√
τi√

vB(α, β)

{
Φ

(
µi
√
τi√
v

)}α−1{
1− Φ

(
µi
√
τi√
v

)}β−1
φ

(
µi
√
τi√
v

)
+ (1− p)δ(0).

The log-likelihood can be expressed as

L(p, v, α, β, a, b) =
N∑
i=1

log f(Xi1, . . . , Xini |p, v, α, β, a, b), (7)

and the maximum likelihood estimates (MLEs) of the parameters can be obtained by maximizing (7).
Clearly, no closed form solution for the likelihood equations exists and in order to derive the MLEs,
we use a global optimization function based on the quasi-Newton method, mle() in the package stats4
(https://stat.ethz.ch/R-manual/R-devel/library/stats4/html/00Index.html) in R. More details about the
quasi-Newton method can be found in [16]. The advantage of using the global optimization subroutine
instead of solving the likelihood equation system is that the latter involves solving more integrals
numerically which in turn leads to lower efficiency. In addition, we tried to use Markov Chain Monte
Carlo (MCMC) approach for the numerical integration instead of the optimization subroutine in R. The
idea improved the calculation efficiency and gave fast response, yet the accuracy was reduced.

5 Simulation

In this section, we use simulation to compare our proposed method with the Laplace model proposed
by [9]. We mimic their simulation study by generating 100 data sets each with N = 3000 genes with two
(n = 2) replicates from the Beta-Normal mixture distribution with the mixing proportion of p = 0.1 and
v = 1.2, 2 and 3. To generate the variances σ2

i the reciprocal of gamma random variable τi generated
from a gamma distribution (3) with parameter values a = 0.04 and b = 2.8 are utilized. A representative
simulated dataset can be viewed in Figure 2. The summary statistics for the model parameter estimates
are given in Table 1.

Table 1. The root mean squared error × 100 (bias × 100) of parameters

p v α β a b
v=1.2 1.312(-0.093) 1.860(1.194) 4.320(-0.010) 6.780(0.301) 8.897(0.629) 5.957(-1.772)
v=2 2.602(-0.077) 10.950(1.734) 3.993(0.042) 6.516(0.278) 9.319(1.994) 7.872(-1.709)
v=3 2.602(-0.082) 7.293(2.629) 3.291(0.105) 6.373(0.263) 3.367(2.486) 10.277(-1.661)

Next, we generated 100 data sets each with N = 3000 genes with n = 2, 4, 6 replicates from the
Student t distribution as the general case of a symmetric distribution assumption. We employed degrees
of freedom of 2/(1− τi), where τi is generated from the gamma distribution (3) with parameter values
a = 0.04 and b = 2.8. The results of the comparison between Beta-Normal model and Laplace model
are summarized in Table 2. We can conclude from Table 2 that both Beta-Normal mixture model and
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Figure 2. log2 fold change versus log variance plot of a simulated data set

Laplace mixture model yield large biases, yet the rMSEs of Beta-Normal model are uniformly smaller
than Laplace model on estimating the mixture proportion. In the estimate of distribution parameters, a
and b, of the inverse gamma distribution, the biases are almost the same for Beta-Normal model and
Laplace model. Yet the Beta-Normal model still yields relatively smaller rMSEs.

Table 2. The root mean squared error ×100 (bias ×100) of parameters using difference replications

Replication n=2 p a b
Beta-Normal 0.450 (-0.970) 125.371 (1.523) 2.883 (-0.933)
Laplace 18.112 (-0.948) 127.990 (1.527) 2.891 (-0.933)
Replication n=4
Beta-Normal 0.322 (-0.970) 56.858 (1.626) 1.390 (-0.937)
Laplace 15.749 (-0.842) 57.663 (1.631) 1.400 (-0.937)
Replication n=6
Beta-Normal 0.313 (-0.915) 48.555 (1.597) 0.944 (-0.880)
Laplace 15.782 (-0.854) 47.316 (1.816) 0.938 (-0.990)

As pointed out earlier, our BN statistic is a generalization of the B statistic derived by [8] and in the
special case that both α and β are equal to 1, B statistic is resulted. We therefore can assess the accuracy
of our proposed BN statistic based on the Beta-Normal mixture model with both the B statistic of [8]
using a normal mixture and the ρ statistic of [9]. The receiver operating characteristic (ROC) curve was
employed for the comparison and the summary measurement of accuracy. The area under the ROC curve
(AUC), was computed in the following three scenarios:
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a. Assume µi|τi is normally distributed. Figure 3 shows ROC curves of Laplace mixture, Beta-Normal
mixture model and Normal mixture respectively.

b. Assume µi|τi is a Beta-Normal random variable. ROC curves can be found in Figure 4 for Laplace
mixture, Beta-Normal mixture and Normal mixture models respectively.

c. Assume µi|τi is a shifted gamma random variable, with shift parameter of 10. Figure 5 demonstrates
the ROC curves for the three models.

(a) Laplace mixture model (b) Beta-Normal mixture
model

(c) Normal mixture model

Figure 3. Comparison under Normal assumption.

(a) Laplace mixture model (b) Beta-Normal mixture
model

(c) Normal mixture model

Figure 4. Comparison under Beta-Normal assumption.

The AUC values are summarized in the Table 3. We found that in Scenario a, the accuracy of
Beta-Normal fit was about 10% off the Laplace model and Normal model. Thus when the normality is
attained, Normal mixture and Laplace mixture models may be preferred. Under Scenario b, the accuracy
of Beta-Normal model was about 30% higher than Laplace model and about 3% higher than Normal
model. Therefore in cases where normality assumption ceases to be true, which according to [11] is more
realistic, the beta-normal mixture model performed the best. Using Scenario c, we noticed that the
accuracy of Beta-Normal model is about 5.18% higher than Laplace model and 5.77% more than Normal
model. Therefore, Beta-Normal mixture model shows better accuracy in fitting the model when normality
is violated.
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(a) Laplace mixture model (b) Beta-Normal mixture
model

(c) Normal mixture model

Figure 5. Comparison under gamma assumption.

Table 3. AUC values of three scenarios

Laplace model Beta-Normal model Normal model
Normal assumption 0.6490 0.5365 0.6374
Beta-Normal assumption 0.5544 0.8631 0.8382
gamma assumption 0.5314 0.5832 0.5255

6 Example

We will demonstrate the proposed method using data publicly available from the Stanford Microarray
Database (SMD, http://genome-www5.stanford.edu/). The experiments were carried out to compare the
general effect on disease resistance RNA transcript levels of Arabidopsis thaliana infected by rhizobac-
terium Pseudomonas thivervalensis (strain MLG45) to axenic control plants ([17]). Here we consider the
experiment on plant leaves, which has slides containing 16416 spots for 4 biological replicates hybridized
to a common reference (SMD Experiment ID numbers 27084, 27000, 26995, and 26718). Further details
are available in [17]. From these normalized log ratios, we estimated the parameters for the Beta-Normal
model in Table 4. In [9], the estimate of the proportion of differentially expressed gene p is 0.075 and the
parameters of the inverse gamma distribution are 5.89 and 3.39; meanwhile we found the corresponding
values to be 0.06 for p and 2.17 and 3.61 for the inverse gamma parameters. We may conclude the
estimates are close, however, our model estimates a lower proportion of differentially expressed genes.

Table 4. The estimates of Beta-Normal parameters in the Example.

p v α β a b
0.06 0.01 10.0 8.74 2.17 3.61

7 Discussion

Traditionally, a common practice in the analysis of microarray data has been to assume that the
distribution of the underlying ratio of the log intensity levels is normal. Several authors have shown that
this assumption does not necessarily hold true and that even after some appropriate transformation and
preprocessing, the distribution of the expression levels may still be non-normal, see for example [18],
[19] and [20]. For this reason, the use of two-component distribution mixtures whereby one component
represents the differentially expressed genes and the other represents the non-differentially expressed
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gene has found popularity. By the same token, however, we believe that assuming a symmetric model
to express the distribution of the differentially expressed genes may not be appropriate. The use of the
family of Beta-Normal models to represent the distribution of the mean of the differentially expressed
genes appears to have many advantages. This two parameter family encompasses a wide range of shapes
including non-symmetric and bimodal distributions. Therefore the generality and versatility of the model
makes it an attractive candidate for the proposed application. We believe that the fact that our BN
statistic reduces to the normal model of [8] when both parameters α and β are equal to 1, is a significant
improvement and makes the Beta-Normal model very appealing. It is surely more natural to let the
data determine the extent of skewness and shape of the distribution. The two parameters α and β of
the Beta-Normal distribution, estimated from the data provide this information about the underlying
distribution. In fact from 1, the results of simulation show that in practice it is possible that the values of
α and β be quite different from unity. The parameter estimates derived for the data in the illustrative
example also indicate that the values of these parameters may be different from one, further proving that
the distribution of the differentially expressed genes may be quite non-normal.
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Appendix 1. Derivation of BN

Let Xi = (Xi1, . . . , Xini), i = 1, . . . , N be the normalized log ratio of the expression levels in the two
conditions for gene i. We assume Xij is a random variable from a Normal distribution with mean µi and
variance σ2

i , i = 1, . . . , N . Define a binary random variable Ii which equals 1 if the gene is differentially
expressed under the two conditions; and takes the value 0 if the gene is not differentially expressed. In the
case of Ii = 1, µi is assumed to be a random variable from the Beta-Normal distribution with mean 0 and
variance vσ2

i . In addition, we assume σ2
i is a random variable from the inverse Gamma distribution with

rate parameter a and shape parameter b, so that the precision τ = 1/σ2
i is a Gamma random variable

with rate a and shape b. Thus we have

Xi1, . . . , Xini |µi, τi ∼ N(µi, σ2
i ) = N(µi, 1/τi)

µi|τi ∼

{
δ(0), Ii = 0
f(u; 0,

√
vσi) = f(u; 0,

√
v/τi), Ii = 1

τi ∼ Γ (b, a),

the corresponding density functions are

f(Xi|µi, τi) = (2π)−
ni
2 τ

ni
2
i exp

−τi2
 ni∑
j=1

(Xij − X̄i)2 + ni(X̄i − µi)2

 ,

fI=1(µi|τi) =
√
τi√

vB(α, β)

{
Φ

(
µi
√
τi√
v

)}α−1{
1− Φ

(
µi
√
τi√
v

)}β−1 1√
2π

exp
{
−τiµ

2
i

2v

}
,

fI=0(µi|τi) = δ(0),

f(τi) = ab

Γ (b)τ
b−1
i exp{−aτi}

Thus the log posterior odds for gene i can be found by calculating fIi=1(Xi) and fIi=0(Xi) respectively
as follows, where S2

i = 1/ni
∑ni

j=1(Xij − X̄i)2.

fIi=0(Xi) =
∫ ∞

0

∫ ∞
−∞

f(Xi|µi, τi)fI=0(µi|τi)f(τi)dµidτi

=
∫ ∞

0
f(Xi|0, τi)f(τi)dτi

=
∫ ∞

0
(2π)−

ni
2 τ

ni
2
i exp

−τi2
 ni∑
j=1

(Xij)2

 ab

Γ (b)τ
b−1
i exp{−aτi}dτi

= (2π)−
ni
2

ab

Γ (b)

∫ ∞
0

τ
b+ ni

2 −1
i exp

{
−niτi2

[
S2
i + X̄2

i

]}
exp{−aτi}dτi

= (2π)−
ni
2

ab

Γ (b)

∫ ∞
0

τ
b+ ni

2 −1
i exp

{
−τi

(
a+ ni

2
[
S2
i + X̄2

i

])}
dτi

= (2π)−
ni
2

ab

Γ (b)
Γ (b+ ni

2 )(
a+ ni

2
[
S2
i + X̄2

i

])b+ ni
2
,

and

fIi=1(Xi) =
∫ ∞

0

∫ ∞
−∞

f(Xi|µi, τi)fI=1(µi|τi)f(τi)dµidτi
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=
∫ ∞

0

∫ ∞
−∞

(2π)−
ni
2 τ

ni
2
i exp

−τi2
 ni∑
j=1

(Xij − X̄i)2 + ni(X̄i − µi)2


×

√
τi√

vB(α, β)

{
Φ

(
µi
√
τi√
v

)}α−1{
1− Φ

(
µi
√
τi√
v

)}β−1 1√
2π

exp
{
−τiµ

2
i

2v

}
× ab

Γ (b)τ
b−1
i exp{−aτi}

= (2π)−
ni+1

2
ab

Γ (b)
1√

vB(α, β)
×∫ ∞

0

∫ ∞
−∞

τ
b+ ni

2 −
1
2

i

{
Φ

(
µi
√
τi√
v

)}α−1{
1− Φ

(
µi
√
τi√
v

)}β−1

exp
{
−τini2 S2

i

}
exp

{
−τini2 (X̄i − µi)2

}
exp

{
−τiµ

2
i

2v

}
exp{−aτi}dµidτi

= (2π)−
ni+1

2
ab

Γ (b)
1√

vB(α, β)
×∫ ∞

0
τ
b+ ni

2 −
1
2

i exp
{
−τi

[
a+ ni

2 S
2
i

]}∫ ∞
−∞

{
Φ

(
µi
√
τi√
v

)}α−1{
1− Φ

(
µi
√
τi√
v

)}β−1

exp
{
−τini2 (X̄2

i + µ2
i − 2X̄iµi)

}
exp

{
−τiµ

2
i

2v

}
dµidτi

= (2π)−
ni+1

2
ab

Γ (b)
1√

vB(α, β)
×∫ ∞

0
τ
b+ ni

2 −
1
2

i exp
{
−τi

[
a+ ni

2 S
2
i

]}∫ ∞
−∞

{
Φ

(
µi
√
τi√
v

)}α−1{
1− Φ

(
µi
√
τi√
v

)}β−1

exp
{
− τi2v

[
vniX̄

2
i + (1 + vni)µ2

i − 2nviX̄iµi
]}
dµidτi

= (2π)−
ni+1

2
ab

Γ (b)
1√

vB(α, β)
×∫ ∞

0
τ
b+ ni

2 −
1
2

i exp
{
−τi

[
a+ ni

2 S
2
i

]}∫ ∞
−∞

{
Φ

(
µi
√
τi√
v

)}α−1{
1− Φ

(
µi
√
τi√
v

)}β−1

exp
{
− (1 + vni)τi

2v

[
vniX̄

2
i

1 + vni
+ µ2

i − 2 nviX̄i

1 + vni
µi

]}
dµidτi

= (2π)−
ni+1

2
ab

Γ (b)
1√

vB(α, β)
×∫ ∞

0
τ
b+ ni

2 −
1
2

i exp
{
−τi

[
a+ ni

2 S
2
i

]}∫ ∞
−∞

{
Φ

(
µi
√
τi√
v

)}α−1{
1− Φ

(
µi
√
τi√
v

)}β−1

exp
{
− (1 + vni)τi

2v

[
vniX̄

2
i

1 + vni
− n2v2

i X̄
2
i

(1 + vni)2

]}
exp

{
− (1 + vni)τi

2v

[
µi −

nviX̄i

1 + vni

]2}
dµidτi

= (2π)−
ni+1

2
ab

Γ (b)
1√

vB(α, β)
×∫ ∞

0
tτ
b+ ni

2 −
1
2

i exp
{
−τi

[
a+ ni

2 S
2
i

]}∫ ∞
−∞

{
Φ

(
µi
√
τi√
v

)}α−1{
1− Φ

(
µi
√
τi√
v

)}β−1

exp
{
−τi

niX̄
2
i

2(1 + vni)

}
exp

{
− (1 + vni)τi

2v

[
µi −

nviX̄i

1 + vni

]2}
dµidτi
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= (2π)−
ni+1

2
ab

Γ (b)
1√

vB(α, β)
×∫ ∞

0
τ
b+ ni

2 −
1
2

i exp
{
−τi

[
a+ ni

2 S
2
i + niX̄

2
i

2(1 + vni)

]}∫ ∞
−∞

{
Φ

(
µi
√
τi√
v

)}α−1

{
1− Φ

(
µi
√
τi√
v

)}β−1
exp

{
− (1 + vni)τi

2v

[
µi −

nviX̄i

1 + vni

]2}
dµidτi

Taking the ratio, the BN statistic is

BNi = log

 p

1− p

[
a+ ni

2 (S2
i + X̄2

i )
]b+ ni

2

√
2vπB(α, β)Γ (b+ ni

2 )
×

∫ ∞
0

τ
b+ ni

2 −
1
2

i exp
{
−τi

[
a+ ni

2 S
2
i + niX̄

2
i

2(1 + vni)

]}∫ ∞
−∞

{
Φ

(
µi
√
τi√
v

)}α−1{
1− Φ

(
µi
√
τi√
v

)}β−1

exp
{
− (1 + vni)τi

2v

[
µi −

nviX̄i

1 + vni

]2}
dµidτi

}

Appendix 2. The Relationship Between BN and B

Here we prove that the BN statistic based on the Beta-Normal distribution is a generalization of the
B statistic of [8] and the latter is resulted when both parameters α and β are equal to 1. First we need to
point out the relationship of parameters between the two settings. Under the [8] parameterization we have

τ∗i = nia
∗

2σ2
i

∼ Γ (ν, 1)

µi|τ∗i ∼

{
δ(0), Ii = 0
N(0, cnia

∗

2τ∗
i

), Ii = 1

Xi ∼ N(µi,
nia
∗

2τ∗i
),

while under our parameterization we have,

τi = 1
σ2
i

∼ Γ (b, a)

µi|τi ∼

{
δ(0), Ii = 0
f(µi, 0,

√
v
τi

), Ii = 1

Xi ∼ N(µi,
1
τi

),

where f is the density of the Beta-Normal distribution, and so

τi = 2
nia∗

τ∗i ∼ Γ (ν, nia
∗

2 ),

with a = nia
∗/2 and b = ν. Furthermore, when Ii = 0, we consider the special case of Beta-Normal

distribution as α = β = 1, then we get v = c. We have

fIi=0(Xi)

= (2π)−ni/2 (nia
∗

2 )ν

Γ (ν)
Γ (ν + ni

2 )
[nia∗

2 + ni

2 (S2
i + X̄2

i )]ν+ ni
2
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=
Γ (ν + ni

2 )
Γ (ν) (2π)−

ni
2 (nia

∗

2 )−
ni
2 [1 + 1

a∗
(S2
i + X̄2

i )]−(ν+ ni
2 ),

and for Ii = 1 with α = β = 1, considering the Beta function B(1, 1) = 1,

fIi=1(Xi)

= (2π)−
ni+1

2
ab

Γ (b)
1√
v
×∫

τ
b+ ni

2 −
1
2

i exp
{
−τi

[
a+ ni

2 S
2
i + niX̄

2
i

2(1 + vni)

]}√
2π
√

v

1 + vni

1
√
τi
dτi

= (2π)−
ni
2

ab

Γ (b)
1√

1 + vni

Γ (b+ ni

2 )[
a+ ni

2 S
2
i + niX̄2

i

2(1+vni)

]b+ ni
2

=
Γ (ν + ni

2 )
Γ (ν) (2π)−

ni
2

(
nia
∗

2

)−ni
2

(1 + cni)−1/2
[
1 + 1

a∗

(
S2
i + X̄2

i

1 + cni

)]−(ν+ ni
2 )

,

Therefore, we can conclude when α = β = 1, B in [8] is resulted from the proposed BN statistic.
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