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Abstract. Design engineers, like all humans, are driven by Nash game theory to maximize return 
and hence simplify design. A determination of the optimal shape of beams to maximize strength and 
minimize costs has been an area of significant research since the 1970’s. However, real cost 
constraints in the market place usually see the selection of standard beams with invariant inertia 
tensor properties being used for most buildings throughout the world. The more challenging problem 
is the development of a beam of varying cross sectional area, this type of beam provides savings in 
terms of the quantity of steel and the mass of the ultimate building or bridge without degrading 
safety and can when manufactured in quantity to reduce costs. The purpose of the paper is to outline 
the mathematical development of aprismatic beams for everyday use in engineering to reduce 
material usage and hence human impact on the global environment. An example is provided using a 
1 km arch bridge. 
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1   Introduction 

Engineering design for steel and concrete typically uses beams of constant cross-section. Engineering 
design for masonry beams does not require constant cross-section as the beams are made from small 
units often by hand. Standard engineering design often uses beams termed prismatic, which has a 
stricter definition than the optical prism in terms of shape, requiring a beam of constant cross-section 
and thus invariant inertia tensor properties. The OED [1] defines a prism as “ a solid figure of which the 
two ends are similar and equal and parallel rectilinear and the sides are parallelograms”. Timoshenko 
and Goodier [2] provide a reasonably simple definition of prismatical beam with a series of examples in 
their classic book. Figure 1 shows one example from Timoshenko and Goodier, in this case two parallel 
vertical sides and two hyperbolas. Modern structural analysis thought is based on this model of beam, 
although the beam here is probably too costly to construct for all but the most special uses. 

 

Figure 1. Prismatic beam from Timoshenko and Goodier (1951). 
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The beam hyperbolas are defined by 
 υ υ+ − =2 2 2(1 )x y a   (1) 

Timoshenko and Goodier provide a reasonably simple calculation method to solve these types of 
problems, but since 1951 there has been a movement to Finite Elements models instead of the theory 
presented by these authors. This sea change is due to the need to solve problems with millions of 
degrees of freedom. A variant on Figure 1 has been used for the development of steel portal frames for 
many decades due to the cost saving for duplicate construction. The variant of the Timoshenko and 
Goodier beam is shown in Figure 2. This type of beam is useful in long span bridges, where cost control 
and mass are an issue. The beam shown here is one of a class of many such shapes that are useful for 
difficult or repetitive projects, many prefabricated steel buildings use this shape.  

 

Figure 2. Aprismatic beam definition 

The purpose of this paper is to develop the mathematical equations that describe the stiffness 
coefficients for aprismatic beams of the form shown in Figure 1. The second stage of the research is the 
application of the aprismatic elements to a number of interesting and challenging problems to 
demonstrate the utility of the procedure. 

2   Literature Review and Significance 

The growth in the use of Finite Element models [3] provides the final constraint on the evolving 
definition of a prismatical beam as one that has the standard stiffness matrix for a fixed end prismatic 
member. The simplicity of the method has locked down the design options significantly, so that the 
standard stiffness matrix is now: 

 
 
 
 

4 2
2 4

EI
L

  (2) 

Equation (2) absolutely dominates the world of structural engineering, even though a general Fortran 
programmed variation was developed by Powell and others in ULARC. ULARC [3] provided an early 
structural analysis program that could easily cater for beams with properties that were not invariant 
along the length. Nichols [4] in considering masonry and stone arches presented the development of a 
rectangular cross-sectional stone block with a degrading element. ULARC was the analysis package and 
incorporated variable stiffness coefficients to allow for a changing Young’s modulus as the beam 
degraded under load. 

Meek [5] demonstrates the numerical method using Simpson’s rule to determine the design of a beam 
of varying cross-section, however there is no good reason not to have this as a standard element in any 
structural package. Figure 1 fits the standard definition of a prismatical beam, but Figure 2 does not 
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and the term aprismatic beam is used to standardize that the cross section along the centreline of the 
beam is not constant. Any reasonable Gedankenexperiment would show that Nash’s game theory [6] 
provides the framework to understand the use of rectilinear beams in modern construction and the 
ubiquitous hard coding of the matrix from (2) into most structural analysis programs, Harrison’s code 
being a fairly classic example [7]. 

However, current experimental engineers provide challenging examples for the theoretical engineer to 
consider and model. Tomor has been providing such challenges with the masonry bridge data in the 
United Kingdom. Analysis of these results has proved to be a very significant challenge in terms of the 
vibration properties of the bridges. Lewis has provided a very powerful tool in her recent publication in 
the Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences for 
providing an analysis of masonry arches, which form the majority of the railway transport network 
bridges in the United Kingdom. The technique developed by Lewis has been extended to use the 
ULARC code developed by Powell’s group at UCB. The critical extension is the ability to analyze 
aprismatic beams. This paper sets out the results of this investigation. 

The real and meaningful significance is the potential for acceptance by the engineering community 
that the aprismatic beam provides an intermediate tool that speeds the analysis stage for some 
interesting and challenging structures, provided that one has access to programs such as ULARC. This 
problem is generally related to a challenging class of structural problems such as shown in the 
interesting paper by Lewis [8], where the inertia tensor is fixed and Young’s modulus is implicitly fixed 
providing a highly structured problem, but the challenge is to relax these constraints and develop a 
more general class of problem than studied by Lewis. This type of analysis would also be useful in 
dealing with coped beams. Nichols, Tomor and Benedetti [9] have recently been using an updated 
version of the Harrison code, termed Wulf to study bridges subjected to vibration as part of the SHAPE 
Project. As part of this work the investigation includes work on bridges that are not constructed from 
prismatic beams.  

Although not part of this SHAPE project, the classic Pont-y-Prydd Bridge from Wales provides a 
very challenging structural analysis problem. Figure 3 shows a sketch of the main elements of the bridge 
in Wales. The aprismatic shape is self-evident, although the arch is fixed depth. 

 

Figure 3. Pont-y-Prydd Bridge in Wales constructed in 1750 by Mr. Edwards, this is the third bridge that has 
survived 

Pont-y-Prydd Bridge provides an interesting analysis challenge, Edward’s challenging bridge at Pont-
y-Prydd has been the subject of intense analysis efforts for the last 100 years. Baker [10] in the early 20th 
century provided an elegant hand solution for the structural analysis of this old bridge. Hughes, Pande, 
and Silica provided a detailed analysis of this bridge [11]. Nichols [12] measured the natural frequency 
set for the bridge and developed a Finite element model.  
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Lewis in the paper recently published in Proceedings of the Royal Society of London A: Mathematical, 
Physical and Engineering Sciences has made a significant advance in understanding the methods of 
vibration analysis for arch and by extension other challenging structures. This interesting analysis on 
the optimal shapes of arches was developed using a moment-less arch as the key example, although an 
infinite series of arch shapes and loads can be analyzed using this technique not just the singular one 
used by Lewis. Professor Lewis’ work provides an interesting model to consider the application of 
aprismatic beam elements. The simplicity of the model belies the power of this technique in developing 
the next iteration in an arch bridge to 1 kilometer. The arch method recently developed by Lewis to 
separate the beam and roadway loads provides the essential method to explain the failure mode of the 
second Edward’s bridge and also explain why the third bridge has survived almost 260 years. 

Benedetti et. al., [13] provides a sophisticated analysis of a masonry bridge constructed about 1815 in 
Northern Italy. The design team for the bridge used the open hydraulic tubes first used by Edwards to 
reduce the haunch mass, increase the water way area in a controlled manner and break up the lower 
frequency modes that are problematic for long span masonry bridges, a useful construct in a seismic area, 
which Parma is.  

This current work builds on the recent vibration analysis being completed by Tomor on a number of 
railway bridges in the UK for the West Somerset railway [14]. In terms of the research interest for the 
research group that I am a part of, the key elements are the dynamic analysis of bridge structures, and 
whilst it is simple to use programs such as Strand7 [15], the overwhelming tendency is to move to solid 
Finite Elements solid elements such as 8 node elements which provide a very long input and analysis 
stage and results that can be difficult to interpret [16]. The analysis of the Finite Element results is 
problematic from a design standpoint. 

The extension to the current theory is this research is the development of a formal set of stiffness 
coefficient that will allow the modelling of aprismatic beams without using the numerical integration 
methods outlined in standard textbooks. In the limit the aprismatic beam approaches the prismatic 
beam of Timoshenko and Goodier as the slope along the beam surface approaches zero. Of course, it can 
be easily argued that this is a simple extension of the calculus of beam theory, and to some extent this 
is correct, the interest here is in the range of applications particularly the vexing issue of long span 
bridges and the rather simplistic current design methods used for some of these bridges. 

3   Analysis and Results 

3.1   Structural Model 

Figure 2 shows the general configuration of the proposed beam used for this analysis. The variables used 
in the definition shown in Figure 2 are, L  being the element length, ,i j  representing the node 
numbers used in the structural model, usually integers of the form 1,2,3…, z  being the vertical axis, x  
the length from the deeper end of the beam and y  the length from the narrow end of the beam. B  is 
the beam width and jD  is the beam depth at end j . This beam type represents a potential knee joint 
for use with standard Universal Beams [17]. 

This is the general form of a steel beam, although it will work with a concrete beam of the same shape 
or a masonry beam of varied shape as long as the variation is linear in the depth along the centreline of 
the beam. This is a much broader problem than covered in the standard text books or used in most 
Finite Element analysis packages for standard beams. 

A standard structural analysis package, such as developed by Harrison [7], provides for the Lewis 
model of a prismatic beam, but the program developed by Sudhakar and others [3] provides a more 
general system in this case termed the Powell model for an aprismatic beam. In developing the Lewis 
model, the standard equations for structural action reduce to an axial force, T , a beam length of L , 
the invariant property A, the Young’s modulus E  and the change in length ∆L : 

 = ∆
AET L
L

  (3) 

In the Powell model the area properties, measured with x  along the centreline are generalized to: 
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=

= +∑
2

1
( )x x

k
A BT D t   (4) 

where the invariant properties are the flange thickness, T , the web thickness, t , so that 
 = +0 ( )x xA A D t   (5) 

The moment of inertia xI  is simply put into the form of three rectilinear boxes for the calculation, 
which is a standard engineering shortcut and can be expressed in the simplest form as: 

 = −
3 3

2( )
12 12

x x
x

BD bd
I   (6) 

As = −b B t , 

 = − −3 31 (2 ( ) )
6x x xI BD B t d   (7) 

And assume that = 2x xd c D  and − = 3B t c B  which for the standard range of beam sizes is 
reasonable, then 

 = −3 3
3 2

1 ((2 ( ) )
6x x xI BD c B c D   (8) 

 = −3 3
3 26 (2 )x xI BD c c   (9) 

And = − 3
1 3 2

1 (2 )
6

c c c  then = 3
1x xI c BD  and it is a reasonable conclusion that  

 ≈
3

3
j j

i i

I D
I D

  (10) 

Certainly, an acceptable answer within the manufacturing tolerances for these types of beams. An 
alternative method is to ignore the web and the local moment of inertia of the flanges and then (10) 
can be expressed as squares. To be consistent with earlier papers, we define =0 jZ D  and =1 iZ D  
where ≥1 0Z Z , which has the advantage for users in showing that ≥1 0Z Z  means that 0Z  clearly 
implies that 0I  is the smaller moment of inertia and the coefficients are not inverted in the analysis. 
One should consider the end users and public safety [18]. Human error is very hard to remove from 
failure analysis.  

Let  
 = ∆ +1 0Z Z Z   (11) 

And  
 ∆ = −0 0Z kZ Z   (12) 

Then yZ  is the measure of variation in the depth along the centreline of the aprismatic beam: 

 = ∆ + 0y
yZ Z Z
L

  (13) 

Rearranged to: 

 = − +
0

( ( 1)) 1yZ y k
Z L

  (14) 

where = − 1c k  and = −x L y , then: 

 = − +
0

((1 ) ) 1yZ x c
Z L

  (15) 

 = − +
0

1yZ cxc
Z L

  (16) 
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 = −
0

yZ cxk
Z L

  (17) 

Hence: 

 =
3

1 1
3

0 0

I Z
I Z

  (18) 

∴   

 
−

=
0

31

0 0

( )
( )

cxZ kI L
I Z

  (19) 

 = − 31

0

( )
I cxk
I L

  (20) 

The stiffness matrix for this beam is then  

 
θ
θ

    
=     

        

( ) ii iji i

j jji jj

k kM EI y
M L k k

  (21) 

The inverse of the stiffness matrix Κ  is the influence matrix Ι  and for unit loads and moments the 
general equation is shown in (22) 

 

 
−    

 = −   
     
  

∫11 12
0

21 22

1 1 1
L

x
f f x xL dx
f f EI L Lx

L

  (22) 

Then the individual matrix Ι  elements can be determined for a general load.  

 θ = ∫
0

1
( )

L

i
M ydy

L EI y
  (23) 

The relationship between the end moments and M  is shown in Figure 4.  

 

Figure 4. Moment diagram 

And from Figure 4 the moment variation along the centreline of the aprismatic beam is: 

 = − −( ) (1 )y i j
y yM M M
L L

  (24) 

 θ =
−

−
∫

30
0

1
( )( )

L

i
M ydy

L c L yEI k
L

  (25) 

And substituting (24) into (25) and using η =
y
L

yields  

 θ η η
η

= ∫
1

0

1 ( )
( )i
M L Ld

EL I
  (26) 

∴  from (20) 
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 η η= + 3
0( ) (1 )I c I   (27) 

Hence 

 
η ηη

θ η η
η η

−
= −∫ ∫

21 1

0 0

(1 )
( ) ( )

ji
i

MML d d
E I I

  (28) 

Subsisting in (27) and taking out the constants yields 

 η ηηθ η η
η η

−
= −

+ +∫ ∫
1 12

3 3
0 0

(1 )(
(1 ) (1 )i i j

j

L M d M d
EI c c

  (29) 

The relevant integrals are given below and if = 1k  then = 0c  and the standard integrals arise, 
which provide the limiting prismatic beam constants shown in (2): 

 η η
η

=
+∫

1 2

3
0 (1 )iif d

c
  (30) 

 η η
η

η
−

=
+∫

1

3
0

(1 )
(1 )ijf d

c
  (31) 

There are now two methods that can be used to solve the integral equations. The first is the 
traditional hand analysis as follows and the second is to use a calculus analysis package, such as 
Wolfram Alpha. Both techniques are used for this analysis to ensure the accuracy of the results.  

Let η+ =1 c a  then η=cda d  and ∴   

 
+

−

= ∫
2

1

3
1

1( ) 1c

ii

a
cf da

ca
  (32) 

Unfortunately when (31) is cast in this form the term 1
c

 is introduced which trends to infinity 

quickly and the ultimate term  

 
+ −

= ∫
1

2
3

1

1 1 1( )
c

ii
af da

c ca
  (33) 

generates a cubic in c . The interesting mathematical issue is the limit as → 0c , the integral is messy 
to work with, but observing that η+ →1 1c  as → 0c  then (30) provides the limit as the area under 

a parabola on the unit line from [0,1], which is 1
3 ,which means that the computer package cannot 

find roots of this problem at = 0c  , so that (30) can and must be used directly in Wolfram Alpha for 
c  reaching a limit of zero. The manual solution is shown in (34) to (36). 

 
+ − +

= ∫
1 2

3 3
1

1 2 1c

ii
a af da

c a
  (34) 

 
+ + +

= − +∫ ∫ ∫
1 1 1

3 2 3
1 1 1

1 1 2 1[
c c c

iif da da da
ac a a

  (35) 

 + + += + −1 1 1
1 1 13 2

1 2 1([ln ] [ ] [ ] )
2

c c c
iif a

ac a
  (36) 

Integration was checked with Wolfram Alpha.  

 = + − + − − +
+ +3 2

1 1 1 1([ln(1 ) ln(1)] 2[ ] 2[1] [ ] [ ])
1 22(1 )iif c

cc c
  (37) 

 = + + − −
+ +3 2

1 2 1(ln(1 ) 0.5 1.5)
1 (1 )iif c

cc c
  (38) 

Wolfram Alpha provides the solution for the integral (31) as 

 +
= − +

+3

( 2)1 [( ) 2 ln( 1)]
12ij

c cf c
cc

  (39) 
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Provided ≠ 0c  where the limit is the standard answer for prismatic members at 1
6 . The jjk  term 

is trivially: 

 η
η

η
−

=
+∫

1 2

3
0

(1 )
(1 )jjf d

c
  (40) 

There are reasonable limits for the range of knee joint beams that can be used in construction. This 
analysis used a domain for c  from 0 to 20.  

3.2   Graphical Results 

Figure 3 shows a plot of the influence coefficients iif  and so on. There are two direct uses for this data, 
it can be used by a design engineer directly with ULARC or it can be implemented into the program 
code, which is the proposal for the code developed by Harrison [7], which has been implemented with 
PARDISO [19], probably the fastest inversion program at the moment and eigenvalue solver FEAST 
[20], probably the fastest eigenvector solver at the moment and using the methods outlined by Gavin for 
the dynamic analysis of structures for the Newmark-Beta method [21]. 

The results are plotted in a logarithm to logarithm space and a trendline is fitted to the data. The 
trendline is a 6th order polynomial. This selection provides the best fit to the data as shown in Figure 5. 

 

Figure 5. Influence coefficient plotted in a logarithm to logarithm space 

Figure 6 shows the results of the matrix inversion of the 2x2 matrices for the flexibility results shown 
in Figure 5. The results are plotted in log-log space. Several methods of statistical analysis were used on 
the stiffness coefficient data. The closest fit is obtained with a linear regression analysis in logarithm to 
logarithm space. 

Table 1 provides the results from the linear regression completed using the standard EXCEL linear 
regression model. It is accepted that the results show more decimal places than warranted by a standard 
statistical analysis [22], but the data is intended for computer programs and a FORTRAN double 
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precision can easily handle these numbers and the intent is to replicate the original data as closely as 
possible with the code.  

Table 1. Stiffness Coefficients – Linear Regression Analysis 

Moment of Inertia Ratio Equation Component Coefficients Standard Error 

Cubic  Intercept (a) 0.573165 0.004643 
X Variable (b) 0.793823 0.002934 

Square Intercept (a) 0.599443 0.000538 
X Variable (b) 0.772944 0.001275 

 
Clearly the two sets of results are quite close and the t-Stat numbers were well above those needed to 

be statistically significant.  

 

Figure 6. Plot of the logarithm of the ratio of the moments of inertia to logarithm of the stiffness coefficients. 

The stiffness coefficients can be used in any program that will accept input of direct stiffness 
coefficients, such as ULARC [3] from UCB. The examples in this paper will be completed with this 
elastic-plastic program. Clearly, the question is why we are now interested in an extension to standard 
beam theory. Even a commonly used FEM package, such as Strand7 requires the direct input of the 
stiffness coefficients for a member as shown in Figure 2. Figure 7 shows a sample of the input screen. 
The other consideration is of course the use of shear areas, which has a direct impact on the 
eigenfrequencies. 

3.3   Analysis 

There are hundreds of interesting and challenging structural analysis problems investigated in the 
literature every year. Baker’s classic text [10] provides more than a score, some dating from the 18th 
century. Lewis’ interesting paper [8] prompted this research paper as one considered the use of Lewis’ 
technique in the problems identified in some of the problems by Baker. It is also prompted by recent 
work by Tomor on masonry arch bridges in the UK [23]. A future paper will consider the joint issue of 
damage to an aprismatic beam. 
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Figure 7. Strand7 Input Panel for aprismatic beams 

Lewis developed the theory for a moment-less arch. Figure 8 shows the moment free arch coordinates 
obtained from the Lewis paper for a height to length ratio of 4, a self-weight of 25kN/m and applied 
load of 50 kN/m vertically applied. 

 

Figure 8. Lewis Arch – Centerline coordinates 

Clearly this type of arch is likely to be used in the development of long arch bridges, such as one sees 
commonly on the China Highway System. The relative mass of the bridge dominates all other loads and 
so Lewis has provided a significant contribution to arch bridge design. The current analysis was 
completed using ULARC as amended by the author from the original code to run on the Intel Fortran 
compiler [24]. ULARC has been used to design many heavy civil structures in Australia when the author 
worked for Sinclair Knight Merz. 

The arch has dimensions of depth 0.68 metres and 1.47 m breadth. Figure 9 shows the results from 
ULARC for the analysis in terms of the bending moment diagrams for the standard Lewis problem.  
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Figure 9. Analysis of Lewis Moment-Free-Arch with Powell Beam alternative 

The critical line is the solid black line showing the resultant bending stress for the beam, Lewis has 
achieved her objective within the limits of accuracy of the ULARC and the published numerical 
numbers. The thin gray line shows the relative error between the flexural stress and the axial stress.  

The first load applied to the standard Lewis bridge is the self-weight of the arch, which due to the 
uniform shape is set at 25 kN/m for the length of the arch, as the Lewis arch has constant cross-section 
of 1 square meter. The results for this load are shown in Figure 9 as self-weight. The second applied load 
is the applied roadway load which generated as a constant along the X axis. This load models a road 
bridge spanning between supports on the arch, a commonly observed design in China on large span 
motorway bridges. This load shows a bending moment that is exactly opposite and almost equal to the 
self-weight, on Figure 9 as the applied load. The results are shown in the figure for the two loads as a 
combined load case listed purely as axial and flexural stress. The small misclose is probably due to the 
rounding in the data supplied with the paper and the use of spring based restraint points in ULARC 
instead of fixed restraints as studied by Lewis. Figure 10 shows X and Y displacement for the arch 
under the roadway load.  

The results show an upward thrust by the centre of the bridge under the applied load. This matches 
the observation by Baker on the failure mode of the Pont-y-Bridge. Edward’s the builder for the Pont-y-
Prydd Bridge in developing the third bridge, after the loss of the first two bridges, used two techniques 
to avoid the upwelling of the centre of the second bridge leading to its failure at the removal of the 
centreing. The first technique was to use Charcoal as a fill material, with a unit mass closer to the unit 
of mass of water in place of stone or soil. The second is the introduction of circular empty elements into 
the haunches as shown on Figure 3. Lewis’s method shows why this worked in 1760. Nichols [25] 
completed a failure analysis of the Pont-y-Prydd Bridge using ABAQUS and demonstrated the modal 
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shape arising from this load combination and the likely failure mechanism for the second bridge in 
Wales at Pont-y-Prydd, based on the first mode. 

 

Figure 10. Moment-less Arch displacement under live load w = 50kN/m 

In considering the method outlined by Lewis and the observations on the Pont-y-Prydd Bridge the 
interesting question is can the same effect on the bridge deflections be achieved using a hollow element 
at each end of the bridge? The intent is to provide a straightforward method of construction and 
analysis to meet modern construction methods and standards.  

Lewis designed a beam with a constant cross-section from the midspan to the edges. There are more 
reasons than just safety to provide a hollow segment into a bridge, services and increased stiffness are 
just two reasons. Let a beam be proposed with the properties shown in Figure 8.  

 

Figure 11. Moment-less Arch – Amended beam design for hollow centre – half beam 

There are sound engineering reasons for selecting this particular configuration for the beam. The first 
is the original Lewis beam has an approximate parabolic shape, which is the preferred shape for roadway 
alignment so that the rate of change of slope is constant and the ride is comfortable. A linear increase in 
depth of the beam from the centre to the fixed edge does not alter the fact that the rate of change is 
linearly related to x  with the addition of a constant slope, again an acceptable roadway configuration. 
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The beam would be reasonably easy to build with fibre reinforcement and high performance concrete. 
The cross-sectional area of the beam is: 
 = − 2

x x xA BD d   (41) 
Assuming that the bridge will be either posttensioned or a fibre concrete used the minimum thickness 

of the walls are set at 150 mm. The slope on the taper section is set at kx  hence: 
 =xD kx   (42) 

The standard adopted by Lewis is a constant cross-section of 1 square metre, so the area equation is 
now reduced to  
 = −2 ( 1.0)x xd BD   (43) 

 
−

=
( 1.0)

1
x

x

BD
d   (44) 

From the Figure 8 sketch to determine the beam properties required for a ULARC analysis. The 
maximum beam depth is 1.5 metres to sustain a 150-mm minimum wall thickness. Figure 12 shows the 
properties including: The depth of the beam which ranges from 0.68 to 1.5 metres, which is sloped line 
with a slope of 2.86% along the length of the beam, well within roadway limits. The internal empty 
space ranges from 0 to 1.2 metres with a slope of 4.2%. The slope is sufficient to allow the pipe to drain. 
The moment of inertia ranges from 0.03 to 0.4 m4. The ratio of the moments of inertia ranges from 1.2 
at the start to 1.1 at the abutments.  

 

Figure 12. Beam properties 
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Figure 13. Moment less arch – Powell Beam – Stress Results 

 

Figure 14. Moment less arch – comparison of displacements between original and modified arch 

ULARC was used to reanalyze the modified Lewis beam, termed a Powell Beam for the purposes of 
this paper. The cross-sectional area of the beam has been maintained constant at 1 sqm. Figure 13 
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shows the stress results for the Powell Beam. The critical results are the axial stress which is a 
maximum of 4.6 MPa at the abutments and well within the capacity of normal weight concrete. The 
combined flexural stress is about -0.18 MPa, which given the numerical results provides a close fit to the 
theoretical system proposed by Lewis.  

The results are for the Lewis number for the beam published on the Proceedings of the Royal Society 
of London A: Mathematical, Physical and Engineering Sciences website, it is likely that recalculating 
these numbers using Double Precison Fortran [24] would reduce the error further, which is not required 
to understand the extreme utility of the method developed by Lewis. 

Figure 14 shows the displacements for two cases, the Lewis and the Powell beams. The dark blue line 
shows the Lewis deflections in the Y or critical direction with a peak of 6 mm or thereabouts. The span 
to deflection ratio is 4600 for the Lewis beam, which shows that the deflection will not cause visible 
movement on the bridge nor be unacceptable. The Powell beam has a deflection of 3.5 mm, which is a 
ratio of 9000 or thereabouts, which shows that the beam has acceptable deflections for the applied load.  

The stiffer beam reduces the rotations on the ends of the abutments, which are assumed stiff, but not 
infinitely stiff as is usual when using ULARC. 

3.4   A Kilometre Arch Bridge 

There are thousands of arch bridges in the world, there is an observed upper limit on the length of arch 
bridges at 550 metres for a bridge in China built in 2009. Svensson [26] opined in 2014 that the upper 
cost effective limit for arch bridges is 300 metres as discussed in the introduction to this classic text. 

One of course is mindful of the 210 metre bridge that Brunel designed for Bristol as a suspension 
bridge in the early 19th century, which still stands today. The reasonable research question is: 

Can one design a 1000 metre arch bridge in one span? 
Clearly the purpose of this paper is to consider the development and mathematics of the Powell beam 

and that in the scant remaining space, one is not going to answer that question in this paper. But, a 
suggested starting point is a Powell beam with a span of 1000 metre in an arch configuration with a 
height say of 250 metres. The likely configuration of the arch is two slanting inward arches meeting at 
the crown. It is suggested that the hangers for the roadway should be designed to impart a compression 
into the arch element. This will require a judicious placement of the cables and supports. Figure 15 
shows a Rhino sketch for the start of the design. 

A second arrangement of cables closer to a cable stayed configuration should also be considered. 

 

Figure 15. Rhino Sketch for a 1000 metre arch bridge 
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4   Conclusion 

This paper sets out the mathematical theory for the development of a simple class of aprismatic beams 
that could be used in both building and bridge construction. The code can be developed in standard 
FEM programs to provide a simple and safe implementation.  

Lewis provides an interesting conceptual idea for constant cross-section prismatic beams. Her work 
looks at the Euclidian geometry and the load distribution to arrive at a “theoretical” moment-less arch. 
In reality, she cancels one moment with the other to arrive at an approximately zero solution. The 
strength of her work is in the identification of a method for solving a class of optimization problems, 
although she imposed a very strict limit with prismatic beams and uniform loads. Prismatic beams are 
common place, but uniform loads are not in highways or railways.  

The paper considered an alternative Powell beam which provides for an increase in the moment of 
inertia of a Lewis beam without increasing the mass, the structural efficiency is improved at limited 
costs. A reanalysis of the moment less beam developed by Lewis using the Powell beam, an aprismatic 
beam, sees a reduction in the peak vertical deflection from 5.5 to 3 mm without an increase in mass and 
a likely reduction in the quantity of steel as the effective depth rises significantly.  

The early thoughts on developing a kilometre-long arch provide some interesting conceptual thoughts 
on the potential for a large Powell beam. Whether this solution is economic in the long run is one that 
will be investigated in a future paper, but the point of the arch is to avoid the massive cantilever towers 
of the cable stayed bridge. The issue of constructability will be the greatest challenge if it is economic. 
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