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Abstract Split Quaternionic least squares (SQLS) problem is one method of solving overdetermined
sets of quaternion linear equations AX = E that is appropriate when there is error in the matrix E.
In this paper, by means of real representation of split quaternion matrices, we derive an iterative
method for finding the minimum-norm solution of the SQLS problems in split quaternionic mechanics.
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1 Introduction

The quaternion invented by William Rowan Hamilton(1805-1865) has been widely used in quaternionic
quantum mechanics and many other fileds. In 1849, James Cockle found the split quaternion, which has
the following form:

q = q1 + q2i+ q3j + q4k, i
2 = −1, j2 = k2 = 1, ijk = 1,

where q1, q2, q3, q4 are real and ij = −ji = k, jk = −kj = −i, ki = −ik = j. The set of all split quaternions
is a ring, denoted by SQ. This ring is an associative, noncommutative four-dimensional Clifford algebra
and has zero divisors, nilpotent elements and nontrivial idempotents[1]. SQ is different from the quaternion
ring and has more complicated algebraic structure. For details, see [1] and the references therein.

In complexified classical and non-Hermitian quantum mechanics, there are surprising relations between
quaternionic and split quaternionic mechanics [2]. In the literature over the past decade, the complexified
mechanical systems with real energies are studied extensively, which can alternatively be viewed as certain
split quaternionic extensions of the underlying real mechanical systems [3].

For dealing with some problems in the theory and numerical computations of split quaternionic
mechanics, one will meet problems of approximate solutions of split quaternion linear equations AX ≈ E,
that is appropriate when there is error in the matrix E, i.e. split quaternionic least squares (SQLS)
problem. The main difficulty in solving this problem is the non-commutative and non-skew-field of the
split quaternion and the standard mathematical methods(see [4,5,6] and their references) of the complex
number field cannot work. In [4], for the first time, the split quaternionic least squares (SQLS) problem
was discussed by means of the real representation and the complex representation, which is also main
methods for researching the quaternionic least squares (QLS) problem[7,8].

In this paper, by means of our real representation, we study the split quaternionic least squares (SQLS)
problem, and derive iterative methods for finding solutions of the SQLS problem in split quaternionic
mechanics.

Let R and SQ = R ⊕Ri ⊕Rj ⊕Rk denote the real number field and the split quaternion ring,
respectively. For a = a1 + a2i+ a3j + a4k, b = b1 + b2i+ b3j + b4k ∈ SQ, the conjugate of a is defined as
ā = a1 − a2i− a3j − a4k, then aā = a2

1 + a2
2 − a2

3 − a2
4. The module |a| of a split quaternion a is defined

as |a| =
√
|aā| =

√
|a2

1 + a2
2 − a2

3 − a2
4|. a is said to be a unit split quaternion if its norm is 1.and their

multiplication is defined as

ab = (a1b1 − a2b2 + a3b3 + a4b4) + (a2b1 + a1b2 + a4b3 − a3b4)i
+(a3b1 + a4b2 + a1b3 − a2b4)j + (a4b1 − a3b2 + a2b3 + a1b4)k.
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For any quaternion matrix A, AT and AH denote the transpose, and conjugate transpose of A, respectively.
A(i : j, k : l) represents the submatrix of A containing the intersection of rows i to j and columns k to l.
In denotes the unit matrix of order n.

In this paper, we will define a real presentation of the split quaternion matrix and study its properties.
As the application of our real presentation, then we will give an alternative of the split quaternion norm,
which enable us to define and study the split quaternionic least squares(SQLS) problem. Iterative methods
are obtained for finding solutions of the SQLS problem in split quaternionic mechanics. At last, one
numerical experiment will be provided to demonstrate the efficiency of our algorithms.

2 Real Representation of Split Quaternion Matrices

For any A = A1 +A2i+A3j +A4k ∈ Qm×n, Al ∈ Rm×n(l = 1, 2, , 3, 4), define

AR ≡


A1 −A2 A3 A4
A2 A1 A4 −A3
A3 A4 A1 −A2
A4 −A3 A2 A1

 ∈ R4m×4n. (1)

The real matrix AR is known as the real representation or the real representation matrix of the split
quaternion matrix A. The set of all matrices shaped like (1) is denoted by Rr4m×4n.

Let

Qt =


0 −It 0 0
It 0 0 0
0 0 0 It

0 0 −It 0

 , St =


0 0 0 It

0 0 −It 0
0 −It 0 0
It 0 0 0

 , Rt =


0 0 It 0
0 0 0 It

It 0 0 0
0 It 0 0

 .

Then Qt, Rt, St are orthogonal matrices.
By simple computation, we can obtain the following properties.

Theorem 2.1 Let A,B ∈ Qm×n, C ∈ Qn×s, α ∈ R. Then
(1). (A+B)R = AR +BR, (αA)R = αAR, (AC)R = ARCR;
(2). Q2

m = −I4m, R
2
m = S2

m = I4m, Q
T
m = −Qm, R

T
m = Rm, S

T
m = Sm;

(3). QT
mA

RQn = AR, RT
mA

RRn = AR, ST
mA

RSn = AR.

It is easy to verify that the following results are right.

Theorem 2.2 For any V ∈ R4m×4n,

V +QT
mV Qm +RT

mV Rm + ST
mV Sm ∈ Rr4m×4n

and it is the real representation matrix of the commutative quaternion matrix

Ṽ = 1
4(Im, Imi, Imj, Imk)(V +QT

mV Qm +RT
mV Rm + ST

mV Sm)


In

−Ini
Inj
−Ink

 .

Proof. Partitioning V into

V =


V11 V12 V13 V14
V21 V22 V23 V24
V31 V32 V33 V34
V41 V42 V43 V44


and taking

V̂ = V +QT
mV Qm +RT

mV Rm + ST
mV Sm,
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we can verify V̂ ∈ Rr4m×4nwith

V̂11 = V11 + V22 + V33 + V44, V̂21 = V21 − V12 + V43 − V34,

V̂31 = V31 + V42 + V13 + V24, V̂41 = V41 − V32 + V23 − V14,

and V̂ is the real representation matrix of the commutative quaternion matrix

Ṽ = V̂11 + V̂21i+ V̂31j + V̂11k = 1
4 (Im, Imi, Imj, Imk)V̂


In

−Ini
Inj
−Ink

 . 2

Further, we can also get the following construction method.

Theorem 2.3 For any V ∈ R4m×n,

(V,QmV,RmV, SmV ) ∈ Rr4m×4n.

The following judgment rule can be obtained from Theorem 2.1 and Theorem 2.2.

Theorem 2.4 For any V ∈ R4m×4n, V ∈ Rr4m×4n if and only if

V = QT
mV Qm = RT

mV Rm = ST
mV Sm.

3 The Split Quaternionic Least Squares Problem

Firstly, we discuss the norm of the split quaternion matrix. By the Frobenius norm of complex matrices, we
define the following Frobenius norm of the split quaternion matrix A = A0 +A1i+A2j +A3k ∈ SQm×n.

‖A‖(F ) ≡ ‖AR‖F , (2)

which has the following properties:
(1)‖A‖(F ) ≥ 0,and equality holds if and only if A = 0;
(2) for α ∈ R, ‖αA‖(F ) = |α|‖A‖(F );
(3) ‖A+B‖(F ) ≤ ‖A‖(F ) + ‖B‖(F );
(4) ‖AB‖(F ) ≤ ‖A‖(F )‖B‖(F ).
(5) ‖A‖2

(F ) = 2(‖A0‖2
F + ‖A1‖2

F + ‖A2‖2
F + ‖A3‖2

F ).
But, different from the Frobenius norm of complex matrices,
(1) for α ∈ SQ, ‖αA‖(F ) 6= |α|‖A‖(F );
(2) ‖A‖(F ) 6=

√
trace(AHA) =

√∑
|aij |2.

Therefore, it is not a natural generality of Frobenius norm for complex matrices, but it is enough to
measure the proximity of two split quaternion matrices.

Let A ∈ SQm×n, E ∈ SQm×l. If

AX = E (3)

has the solution X ∈ SQn×l, then we have

ARXR = ER

and therefore real linear equation

ARY = ER(1 : 4m, 1 : l) (4)

has the solution Y ∈ R4n×l.
On the other hand, if (4) has a solution Y ∈ R4n×l, then we have

ARQnY = QmA
RQT

nQnY = QmE
R(1 : 4m, l),

ARRnY = RmA
RRT

nRnY = RmE
R(1 : 4m, l),

ARSnY = SmA
RST

n SnY = SmE
R(1 : 4m, l),
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and then

AR(Y,QnY,RnY, SnY )
= (ER(1 : 4m, l), QmE

R(1 : 4m, l), RmE
R(1 : 4m, l), SmE

R(1 : 4m, l))
= CR.

From Theorem 2.3, we know that (Y,QnY,RnY, Sny) is the real representation matrix of a split
quaternion matrix(marked as X), and obtain AX = E.

In conclusion, we have the following result.

Theorem 3.1 Let A ∈ SQm×n, E ∈ SQm×l. Then the equation (3) has a solution in X ∈ SQn×l if and
only if the real linear equation (4) has a solution in R4n×l. And if (4) has the solution Y ∈ R4n×l, then

(In, Ini, Inj, Ink)Y

is the solution of (3).

If the equation (3) has no solution, on the basis of the above norm definition, we want to find a matrix
X ∈ SQn×l such that

‖AX − E‖(F ) = min . (5)

This problem is called the split quaternionic least squares (SQLS) problem.
On the same time, we construct the following real least squares problem

‖ARY − ER‖F = min, (6)

with unknown real matrix Y ∈ R4n×4l.
In [4], Z. Zhang studied the SQLS problem (5) through the real LS problem (6), but here Y has special

structure. In fact, Z. Zhang turned the SQLS problem into a real constrained least squares problem.
Because

‖AX − E‖2
(F ) = 4‖(ARXR − ER)(1 : 4m, 1 : l)‖2

F ,

if we find the solution Ŷ of the real unconstrained least squares problem

‖ÂY − Ê‖F = min, (7)

with Â = AR, Ê = ER(1 : 4m, 1 : l) and unknown real matrix Y ∈ R4n×l, and let (Ŷ , QmŶ , RmŶ , Smŷ)
be the real representation matrix of the split quaternion matrix X̂, then X̂ is a solution of the SQLS
problem (5).

3.1 LSQR Algorithm

First, we review the LSQR algorithm prosed by Paige and Sauders[9] for solving the following lease
squares problem:

min
x∈Rn

‖Mx− f‖2 (8)

with given M ∈ Rm×n and f ∈ Rm, whose normal equation is

MTMx = MT f. (9)

Algorithm LSQR
(1)Initialization.
β1u1 = f, α1v1 = MTu1, h1 = v1, x0 = 0, ζ̄1 = β1, ρ̄1 = α1.

(2)Iteration. For i = 1, 2, · · ·
(i) bidiagonalization
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(a)βi+1ui+1 = Mvi − αiui

(b)αi+1vi+1 = MTui+1 − βi+1vi

(ii)construct and use Givens rotation
ρi =

√
ρ̄2

i + β2
i+1

ci = ρ̄i/ρi, si = βi+1/ρi, θi+1 = siαi+1
ρ̄i+1 = −ciαi+1, ζi = ciζ̄i, ζ̄i+1 = siζ̄i

(iii) update x and h
xi = xi−1 + (ζi/ρi)hi

hi+1 = vi+1 − (θi+1/ρi)hi

(iv) check convergence.
We can choose

‖MT (f −Mxk)‖2 = |αk+1ζ̄k+1ck| < τ

as convergence criteria, where τ > 0 is a small tolerance.

Theorem 3.2 ([9]) The solution generated by Algorithm LSQR is the minimum norm solution of (8).

3.2 LSQR Algorithm for the Split Quaternionic Least Squares Problem

We consider a more general SQLS problem. Here, we are given data matrices A ∈ SQm×n, B ∈ SQp×q,
an observation matrix E ∈ SQm×q, and are asked to find a matrix X ∈ SQn×p such that

‖AXB − E‖(F ) = min . (10)

For any X ∈ Rr4n×4p,

X =


X1 −X2 X3 X4
X2 X1 X4 −X3
X3 X4 X1 −X2
X4 −X3 X2 X1

 ∈ R4n×4p,

define
veci(X) = vec(X(:, 1 : p)).

It is easy to know
vec(X) = Fveci(X),

where

F =


diag(I4n, · · · , I4n)
diag(Qn, · · · , Qn)
diag(Rn, · · · , Rn)
diag(Sn, · · · , Sn)

 ∈ R16np×4np.

It is easy to know that F is of full column rank, and

FTF = 4I4np,FT = FTFF†.

Because

‖AXB − E‖2
(F ) = 1

4‖A
RXRBR − ER‖2

F

= 1
4‖(B

RT

⊗AR)vec(XR)− vec(ER)‖2
2

= 1
4‖(B

RT

⊗AR)Fveci(XR)− vec(ER)‖2
2,

where M ⊗N denote the Kronecker product of matrices M and N , the SQLS problem (10) is equivalent
to

min
x∈R4np

‖Mx− f‖2 (11)
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with
M = (BRT

⊗AR)F ∈ R16mq×4np, f = vec(ER) ∈ R16mq.

Notice that the solution x of (11) corresponds to veci(XR), where X is the solution of (10).
Now, we will apply Algorithm LSQR to (11). The vector iteration of LSQR will be rewritten into

matrix form so that the Kronecker product and the F can be released. To this end, it is required to
transform the matrix-vector products of Mv and MTu back to a matrix-matrix form for variant vectors
v ∈ R4np and u = vec(U) ∈ R16mq, where U ∈ Qm×q

R . Notice that we do not want to construct the
matrix M explicitly.

Let mat(a) represent the matrix form of a vector a. For any v ∈ R4np and u = vec(U) ∈ R16mq,
where U ∈ Qm×q

R . Let
Ṽ = mat(v) = vec−1(v) ∈ R4n×p,

V = (Ṽ , QnṼ , RnṼ , SnṼ ) ∈ Rr4n×4p.

Then we have

mat(Mv) = mat((BRT

⊗AR)Fv) = mat((BRT

⊗AR)Fvec(Ṽ ))
= mat((BRT

⊗AR)Fveci(V )) = mat((BRT

⊗AR)vec(V ))
= ARV BR,

mat(MTu) = mat(FT (BR ⊗ART

)u) = mat(FT (BR ⊗ART

)vec(U))
= mat(FT vec(ART

UBRT

)) = mat(FTFF†vec(ART

UBRT

))
= mat(4I4npF†vec(ART

UBRT

)) = mat(4I4npveci(ART

UBRT

))
= Z(:, 1 : p),

where
Z = 4ART

UBRT

∈ Rr4n×4p.

Therefore, we can get the following algorithm.

Algorithm 3.1 (Algorithm LSQR-SQ for (10))
(1)Initialization.
X0 = 0 ∈ R4n×p, β1 = ‖ER‖F , U1 = ER/β1, Z1 = 4ART

U1B
RT

,
V̄1 = Z1(:, 1 : p),α1 = ‖V̄1‖F , Ṽ1 = V̄1/α1, V1 = (Ṽ1, QnṼ1, RnṼ1, SnṼ1),
H1 = Ṽ1, ζ̄1 = β1, ρ̄1 = α1.

(2)Iteration. For i = 1, 2, · · ·
(i) bidiagonalization

(a)Ūi+1 = ARViB
R − αiUi, βi+1 = ‖Ūi+1‖F , Ui+1 = Ūi+1/βi+1,

(b)Zi+1 = 4ART

Ui+1B
RT

, V̄i+1 = Zi+1(:, 1 : p)− βi+1Ṽi,
αi+1 = ‖V̄i+1‖F , Ṽi+1 = V̄i+1/αi+1, Vi+1 = (Ṽi+1, QnṼi+1, RnṼi+1, SnṼi+1).

(ii)construct and use Givens rotation
ρi =

√
ρ̄2

i + β2
i+1, ci = ρ̄i/ρi, si = βi+1/ρi, θi+1 = siαi+1,

ρ̄i+1 = −ciαi+1, ζi = ciζ̄i, ζ̄i+1 = siζ̄i.
(iii) update X and H
Xi = Xi−1 + (ζi/ρi)Hi, Hi+1 = Ṽi+1 − (θi+1/ρi)Hi.

(iv) check convergence. Output
X = Xi(1 : n, :) +Xi(n+ 1 : 2n, :)i+Xi(2n+ 1 : 3n, :)j +Xi(3n+ 1 : 4n, :)k.

Algorithm 3.1 can find the minimum norm solution x = veci(XR) of (11), that is,

‖veci(XR)‖2 = min .

Again,
‖X‖2

(F ) = 1
4‖X

R‖2
F = ‖veci(XR)‖2

2,

so we have the following result.
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Theorem 3.3 The solution generated by Algorithm 3.1 is the minimum norm solution of the SQLS
problem (10).

Making the best of the structure of Ui and Vi, we can simplify Algorithm 3.1 to reduce operation
amount and storage space greatly.

At last, we directly give the simplified algorithm for the SQLS problem (5).

Algorithm 3.2 (Algorithm LSQR-SQ for (5))
(1)Initialization.
X

(0)
j = 0 ∈ Rn×l, j = 1, 2, 3, 4. β(1) =

√∑4
j=1 ‖Ej‖2

F ,

U
(1)
j = Ej/β

(1), j = 1, 2, 3, 4.
V̄

(1)
1 = AT

1 U
(1)
1 +AT

2 U
(1)
2 +AT

3 U
(1)
3 +AT

4 U
(1)
4 ,

V̄
(1)

2 = −AT
2 U

(1)
1 +AT

1 U
(1)
2 +AT

4 U
(1)
3 −AT

3 U
(1)
4 ,

V̄
(1)

3 = AT
3 U

(1)
1 +AT

4 U
(1)
2 +AT

1 U
(1)
3 +AT

2 U
(1)
4 ,

V̄
(1)

4 = AT
4 U

(1)
1 −AT

3 U
(1)
2 −AT

2 U
(1)
3 +AT

1 U
(1)
4 ,

α(1) =
√∑4

j=1 ‖V̄
(1)

j ‖2
F , V

(1)
j = V̄

(1)
j /α(1), H

(1)
j = V

(1)
j , j = 1, 2, 3, 4.

ζ̄(1) = β(1), ρ̄(1) = α(1).
(2)Iteration. For i = 1, 2, · · ·

(i) bidiagonalization
(a)Ū (i+1)

1 = A1V
(i)

1 −A2V
(i)

2 +A3V
(i)

3 +A4V
(i)

4 − αiU
(i)
1 ,

Ū
(i+1)
2 = A2V

(i)
1 +A1V

(i)
2 +A4V

(i)
3 −A3V

(i)
4 − αiU

(i)
2 ,

Ū
(i+1)
3 = A3V

(i)
1 +A4V

(i)
2 +A1V

(i)
3 −A2V

(i)
4 − αiU

(i)
3 ,

Ū
(i+1)
4 = A4V

(i)
1 −A3V

(i)
2 −A2V

(i)
3 +A1V

(i)
4 − αiU

(i)
4 ,

βi+1 =
√∑4

j=1 ‖Ū
(i+1)
j ‖2

F , U
(i+1)
j = Ej/β

(i+1), j = 1, 2, 3, 4.
(b)V̄ (i+1)

1 = AT
1 U

(i+1)
1 +AT

2 U
(i+1)
2 +AT

3 U
(i+1)
3 +AT

4 U
(i+1)
4 − β(i+1)V

(i)
1 ,

V̄
(1)

2 = −AT
2 U

(i+1)
1 +AT

1 U
(i+1)
2 +AT

4 U
(i+1)
3 −AT

3 U
(i+1)
4 − β(i+1)V

(i)
2 ,

V̄
(1)

3 = AT
3 U

(i+1)
1 +AT

4 U
(i+1)
2 +AT

1 U
(i+1)
3 +AT

2 U
(i+1)
4 − β(i+1)V

(i)
3 ,

V̄
(1)

4 = AT
4 U

(i+1)
1 −AT

3 U
(i+1)
2 −AT

2 U
(i+1)
3 +AT

1 U
(i+1)
4 − β(i+1)V

(i)
4 ,

αi+1 =
√∑4

j=1 ‖V̄
(i+1)

j ‖2
F , V

(i+1)
j = V̄

(i+1)
j /α(i+1), j = 1, 2, 3, 4.

(ii)construct and use Givens rotation
ρ(i) =

√
(ρ̄(i))2 + β(i+1)2

, c(i) = ρ̄(i)/ρ(i), s(i) = β(i+1)/ρ(i), θ(i+1) = s(i)α(i+1),
ρ̄(i+1) = −c(i)α(i+1), ζ(i) = c(i)ζ̄(i), ζ̄(i+1) = s(i)ζ̄(i).

(iii) update X and H
X

(i)
j = X

(i−1)
j + (ζ(i)/ρ(i))H(i)

j , H(i+1)
j = V

(i+1)
j − (θ(i+1)/ρ(i))H(i)

j , j = 1, 2, 3, 4.
(iv) check convergence. Output
X = X

(i)
1 +X

(i)
2 i+X

(i)
3 j +X

(i)
4 k.

Example 3.1. Let

A =

 1 + j 2 + k
−i i+ j
−1 + i k

 , E =

1− k 1 + i
−j j + k
i+ j 1 + k

 .

In [4], the authors got the solution Y ∈ R8×8 by solving the real matrix

(AR)TARY = (AR)TER,

and then obtained the unique solution X of (5) as follows.

X =
(

0.5698− 0.3184i− 0.2179j − 0.8547k −0.2849− 0.0279i− 0.1229j − 0.2793k
0.0978− 0.1788i− 0.0838j − 0.0810k 0.6006− 0.0112i+ 0.3436j + 0.0503k

)
.
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Figure 1. The relation between error and iteration step.

By our Algorithm 3.2, we also get the above result. Let ηl = log 10(‖MTMxl −MT f‖F ) denotes the
normal equation error after the lth iteration. Figure 1 give the relation between the normal equation error
ηl and iteration step l, and show that Algorithm 3.2 is efficient.

4 Conclusion

In this paper, we define a real presentation of the split quaternion matrix and study its properties in
detail, give an alternative of the split quaternion norm, which enable us to define and study the split
quaternionic least squares(SQLS) problem. By the real presentation and the classical LSQR algorithm,
we derive two iterative methods for finding solutions of the SQLS problem in split quaternionic mechanics.
Due to our limited programming capabilities, the performance of current algorithms is not very efficient.
We think that these algorithms can be further optimized to improve efficiency. This is also one of the
directions we will study in the future.
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