Advances in Analysis
Report on the Absolute Differential Equations I
Download PDF (690.1 KB) PP. 41 - 61 Pub. Date: January 15, 2017
Author(s)
- Veronika Chrastinová*
Brno University of Technology, Faculty of Civil Engineering, Department of Mathematics, Veverí 331/95, 602 00 Brno, Czech Republic - Václav Tryhuk
Brno University of Technology, Faculty of Civil Engineering, AdMaS centre, Purkynova 139, 612 00 Brno, Czech Republic
Abstract
Keywords
References
[1] Veronika Chrastinová and Václav Tryhuk. Automorphisms of submanifolds. Adv. Difference Equ., pages Art. ID 202731, 26, 2010.
[2] Václav Tryhuk and Veronika Chrastinová. Automorphisms of curves. J. Nonlinear Math. Phys., 16(3):259–281, 2009.
[3] Veronika Chrastinová. Parallel curves in three–dimensional space. In 5-th Conference on Mathematics and Physics on Technical Universities, pages 120–124. University of Defence, Brno, 2007.
[4] Veronika Chrastinová and Václav Tryhuk. Generalized contact transformations. Journal of Applied Mathematics, Statistics and Informatics, 3(1):47–62, 2007.
[5] Jan Chrastina. The formal theory of differential equations, volume 6 of Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis. Mathematica. Masaryk University, Brno, 1998.
[6] V. Tryhuk, V. Chrastinová, and O. Dlouhy. The Lie group in infinite dimension. Abstr. Appl. Anal., pages Art. ID 919538, 35, 2011.
[7] Václav Tryhuk and Veronika Chrastinová. Automorphisms of ordinary differential equations. Abstr. Appl. Anal., pages Art. ID 482963, 32, 2014.
[8] Veronika Chrastinová and Václav Tryhuk. On the internal approach to differential equations 1. The involutiveness and standard basis. Math. Slovaca, 66(4):999–1018, 2016. DOI: 10.1515/ms-2015-0198.
[9] Veronika Chrastinová and Václav Tryhuk. On the internal approach to differential equations 2. The controllability structure. Math. Slovaca, 2014. (arXiv:1409.5904) accepted.
[10] Veronika Chrastinová and Václav Tryhuk. On the internal approach to differential equations 3. Infinitesimal symmetries. Math. Slovaca, 2014. (arXiv:1403.0781) accepted.
[11] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths. Exterior differential systems, volume 18 of Mathematical Sciences Research Institute Publications. Springer-Verlag, New York, 1991.
[12] I. S. Krasil0shchik, V. V. Lychagin, and A. M. Vinogradov. Geometry of jet spaces and nonlinear partial differential equations, volume 1 of Advanced Studies in Contemporary Mathematics. Gordon and Breach Science Publishers, New York, 1986. Translated from the Russian by A. B. Sosinski??.
[13] A. M. Vinogradov. Cohomological analysis of partial differential equations and secondary calculus, volume 204 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 2001. Translated from the Russian manuscript by Joseph Krasil0shchik.
[14] Ch. Riquier. Les systèmes d’équations aux dérivées partielles. Gauthier–Villars, 1910.
[15] élie Cartan. L’intégration des systèmes d’équations aux différentielles totales. Ann. Sci. école Norm. Sup. (3), 18:241–311, 1901.
[16] élie Cartan. Les sous-groupes des groupes continus de transformations. Ann. Sci. éc. Norm. Supér. (3), 25:57–194, 1908.
[17] élie Cartan. Les systèmes différentiels exterieurs et leurs applications geométriques. Paris: Hermann & Cie. 214 p. (1945)., 1945.
[18] Bernard Malgrange. Cartan involutiveness = Mumford regularity. In Commutative algebra (Grenoble/Lyon, 2001), volume 331 of Contemp. Math., pages 193–205. Amer. Math. Soc., Providence, RI, 2003.
[19] élie Cartan. Sur l’équivalence absolue de certains systèmes d’équations différentielles et sur certaines familles de courbes. Bull. Soc. Math. France, 42:12–48, 1914.
[20] David Hilbert. über den begriff der klasse von differentialgleichungen. Math. Ann., 73(1):95–108, 1912.
[21] Elie Cartan. Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Sci. école Norm. Sup. (3), 27:109–192, 1910.
[22] Shlomo Sternberg. Lectures on differential geometry. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
[23] Boris A. Kupershmidt. KP or mKP, volume 78 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2000. Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems.
[24] Václav Tryhuk and Veronika Chrastinová. On the mapping of jet spaces. J. Nonlinear Math. Phys., 17(3):293–310, 2010.
[25] Jan Chrastina. Examples from the calculus of variations. I. Nondegenerate problems. Math. Bohem., 125(1):55–76, 2000.
[26] Jan Chrastina. Examples from the calculus of variations. II. A degenerate problem. Math. Bohem., 125(2):187– 197, 2000.
[27] Jan Chrastina. Examples from the calculus of variations. III. Legendre and Jacobi conditions. Math. Bohem., 126(1):93–111, 2001.
[28] Jan Chrastina. Examples from the calculus of variations. IV. Concluding review. Math. Bohem., 126(4):691–710, 2001.