Isaac Scientific Publishing

Geosciences Research

Younger Granites and Associated Pegmatites of Gabal El Fereyid – Wadi Rahaba Area, South Eastern Desert, Egypt: Geological and Geochemical Characteristics

Download PDF (2223 KB) PP. 29 - 50 Pub. Date: November 1, 2018

DOI: 10.22606/gr.2018.34001

Author(s)

  • Maher I. Dawoud
    Geology Department, Faculty of Science, Minufiya University, Egypt
  • Gehad M. Saleh*
    Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt
  • Hassan A. Shahin
    Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt
  • Farrage M. Khaleal
    Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt
  • Bahaa M. Emad
    Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt

Abstract

Lithologically, the rock types of G. El Fereyid - W. Rahaba area are dominantly granites associated with pegmatites. The granitic rocks comprise tonalite and monzogranite with (minor acidic dykes), quartz and pegmatites occur as a vein type (granitic and perthitic pegmatites) hosted within the monzogranite. Structural analysis shows the presence of a prominent set of folds with axes striking WNW to NW and a less prominent set with pronounced ENE and NNW trends. Petrochemical studies and tectonic discrimination diagrams for the monzogranite reveal that it is classified as post orogenic granites (POG). Geochemically, monzogranite shows enrichment (peaks) of large ion lithophile elements (LILE; Pb, Rb, Ba, Sr) and high field strength elements (HFSE; Y, Zr, Nd,) and depletion (troughs) of K, P and Ti. Pegmatite shows enrichment (peaks) of large ion lithophile elements (LILE; Pb, Rb, Sr) and high field strength elements (HFSE; Y, Zr, Th, U, Nb) and depletion (troughs) of K, P and Ti. They exhibit high K-calc alkaline magma and peraluminous characteristics and considered as post orogenic granites (POG). The monzogranite reveal small to moderate negative Eu anomaly, while the pegmatites reveal moderate to large negative Eu anomaly. The pegmatite displays clear W-type tetrad effect of the REE while, the studied monzogranite do not show tetrad effect.

Keywords

Petrology, Geochemistry, G. El Fereyid - W. Rahaba granites, Pegmatites, Egypt.

References

[1] H. H. Abd El Naby and G.M. Saleh, Radioelement distribution in the proterozoic granites and associated pegmatites of Gabal El Fereyid area, Southeastern Desert, Egypt, Applied Radiation and Isotopes 59, pp. 289-299, 2003.

[2] R. J. Walker, The origin of the Tin Mountain pegmatite, Black Hills, South Dakota: Unpubl. Ph.D.thesis, State University of New York at Stony Brook, 170 pp, 1984.

[3] R. Thomas and J. D. Webster, Characteristics of berlinite from the Ehrenfriedersdorf pegmatite, Erzgebirge, Germany: European Journal of Mineralogy, v. 281, pp. 124-136, 2000.

[4] G. M. Sosa, M. S. Augsburger and J. S. Pedregosa, Columbite-group minerals from rare-metal granitic pegmatites of the Sierra de San Luis, Argentina: European Journal of Mineralogy, v. 14, p. 627-636, 2004.

[5] L. R. Page, Uranium in pegmatites. Econ. Geol. 45, pp.12–34, 1950.

[6] H. M. E. Shurmann, The Precambrian along the Gulf of Suez and the Northern Part of the Red Sea [M]. E.J. Brill, Leiden, Netherlands, pp.122-142, 1966.

[7] M. H. El Baraga, Geolgical, mineralogical and geochemical studies of the Precamrian rocks around Wadi Rahaba, South Eastern Desert, Egypt. PhD Geol, Fac Sci, Tanta Univ, Egypt, 278pp, 19992.

[8] M. A. El Amawy, Structure and tectonic development of Wadi Beitan, Wadi Rahaba area, South Eastern Desert, Egypt. 9th Symp Precambrian Develop, Nat Comitt Geol Sci, Cairo, Egypt, pp.9, 1991.

[9] M. A. F. M. El Eraqi, Geophysical study on the area between Latitudes 23 00-25 N and Longitudes 33 30-35 30 E, Southeastern Desert, Egypt. PhD Geophy, Fac Sci, Zagazig Univ, 289 pp, 1990.

[10] A. M. Abdel Karim and E. A. Sos, Geochemical characteristics and potassium argon ages dating of some granitoids from South Eastern Desert, Egypt. Egypt J Geol Soc Egypt, Cairo. Egypt V.44, No. 1, pp. 305-318, 2000.

[11] E. R. Middlemost, Magmas and magmatic rocks: An introduction to igneous petrology. Longman, Singapore, pp.161-162, 1985.

[12] H. De La Roche, J. Leterrier, P. Grandclaude and M. Marchal, A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analysis; its relationships with current nomenclature. Chem. Geol., v. 29, pp. 183-210, 1980.

[13] K. R. Mehnert, and W. Busch, The Ba content of K-feldspar megacrysts in granites. Neus Jahrbuch Mineralogie Abhandlung, v. 140, pp. 221-252, 1981.

[14] P. D. Maniar, and P. M. Piccoli, Tectonic discrimination of granitoids., Geol. Soc. Am. Bull., vol. 101, pp. 635- 643, 1989.

[15] B. W. Chappell and A. J. R. White, Two contrasting granite types. Pacific Geology, Vol. 8, pp. 173-174, 1974.

[16] O. F. Tuttle and W. L. Bowen, Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Amer. Mem. 74, 1958.

[17] W. C. Luth, R. H. Jahns and O. F. Tuttle, The granite system at pressures of 4 to 10 kilobars. Journal of Geophysical Research 69, pp. 759 -773, 1964.

[18] S. S. Sun, and W. F. McDonough, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A. D. and Norry, M. J. (eds.): Magmatism in the ocean basins. Geol. Soc. London. Spec. Publ. 42, pp. 313-345, 1989.

[19] R. L. Cullers and l. Graf, Rare Earth elements in igneous rocks of the continental crust: Intermediate and silicic rocks are petrogenesis. In: Henderson, P. (ed.) Rare Earth Elements Geochemistry. Elsevier Pub. Co., Amsterdam, Vol. 2, pp. 275-316, 1984.

[20] W. V. Boynton, Geochemistry of the rare earth elements: meteorite studies In: Henderson, P. (ed.) Rare earth element geochemistry [M]. Elsevier, Amsterdam. pp. 63-114, 1984.

[21] A. Masuda, O. Kawakami, Y. Dohmoto, and T. Takenaka, Lanthanide tetrad effects in nature: Two mutually opposite types, W and M. J. Geochem. J. 21, pp.119- 124, 1987.

[22] W. Irber, The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho and Zr/Hf of evolving peraluminous granite suites. Geochemica. et Cosmochimica Acta, 63 (3), pp. 489- 508, 1999.

[23] M. Bau, Controls on the fractionation of isovalent trace elements in magmatic and aqueous system; evidence from Y/Ho, Zr/Hf and lanthanide tetrad effect. Contrib. Mineral Petrol, 123, pp. 323-333, 1996.

[24] W. Irber, H. J. Forster, L. Hech, P. Moller and G. Mortteani, Experimental, geochemical, mineralogical and oxygen isotope constrain in the late magmatic history of the Fichtelgebirge granites (Germany).Geol Rdesch 86, pp.110-124, 1997.

[25] P. Cerny and D. M. Burt, Paragenesis, and geochemical evolution of micas in granitic pegmatites, in Bailey, S. W., ed., Micas: Mineralogical Society of America, Reviews in Mineralogy, v. 13, pp. 257- 297, 1984.

[26] A. Miyashiro, Classification, characteristics and origin of ophiolites. J. Geol., vol. 83, pp. 249-281, 1975.

[27] A. Gerdes, G. Worner and A. Henk, Post collisional granite generation and HT – LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. J. of the Geological Society of London. 157, pp. 577- 587, 2000.