Geosciences Research
Younger Granites and Associated Pegmatites of Gabal El Fereyid – Wadi Rahaba Area, South Eastern Desert, Egypt: Geological and Geochemical Characteristics
Download PDF (2223 KB) PP. 29 - 50 Pub. Date: November 1, 2018
Author(s)
- Maher I. Dawoud
Geology Department, Faculty of Science, Minufiya University, Egypt - Gehad M. Saleh*
Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt - Hassan A. Shahin
Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt - Farrage M. Khaleal
Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt - Bahaa M. Emad
Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt
Abstract
Keywords
References
[1] H. H. Abd El Naby and G.M. Saleh, Radioelement distribution in the proterozoic granites and associated pegmatites of Gabal El Fereyid area, Southeastern Desert, Egypt, Applied Radiation and Isotopes 59, pp. 289-299, 2003.
[2] R. J. Walker, The origin of the Tin Mountain pegmatite, Black Hills, South Dakota: Unpubl. Ph.D.thesis, State University of New York at Stony Brook, 170 pp, 1984.
[3] R. Thomas and J. D. Webster, Characteristics of berlinite from the Ehrenfriedersdorf pegmatite, Erzgebirge, Germany: European Journal of Mineralogy, v. 281, pp. 124-136, 2000.
[4] G. M. Sosa, M. S. Augsburger and J. S. Pedregosa, Columbite-group minerals from rare-metal granitic pegmatites of the Sierra de San Luis, Argentina: European Journal of Mineralogy, v. 14, p. 627-636, 2004.
[5] L. R. Page, Uranium in pegmatites. Econ. Geol. 45, pp.12–34, 1950.
[6] H. M. E. Shurmann, The Precambrian along the Gulf of Suez and the Northern Part of the Red Sea [M]. E.J. Brill, Leiden, Netherlands, pp.122-142, 1966.
[7] M. H. El Baraga, Geolgical, mineralogical and geochemical studies of the Precamrian rocks around Wadi Rahaba, South Eastern Desert, Egypt. PhD Geol, Fac Sci, Tanta Univ, Egypt, 278pp, 19992.
[8] M. A. El Amawy, Structure and tectonic development of Wadi Beitan, Wadi Rahaba area, South Eastern Desert, Egypt. 9th Symp Precambrian Develop, Nat Comitt Geol Sci, Cairo, Egypt, pp.9, 1991.
[9] M. A. F. M. El Eraqi, Geophysical study on the area between Latitudes 23 00-25 N and Longitudes 33 30-35 30 E, Southeastern Desert, Egypt. PhD Geophy, Fac Sci, Zagazig Univ, 289 pp, 1990.
[10] A. M. Abdel Karim and E. A. Sos, Geochemical characteristics and potassium argon ages dating of some granitoids from South Eastern Desert, Egypt. Egypt J Geol Soc Egypt, Cairo. Egypt V.44, No. 1, pp. 305-318, 2000.
[11] E. R. Middlemost, Magmas and magmatic rocks: An introduction to igneous petrology. Longman, Singapore, pp.161-162, 1985.
[12] H. De La Roche, J. Leterrier, P. Grandclaude and M. Marchal, A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analysis; its relationships with current nomenclature. Chem. Geol., v. 29, pp. 183-210, 1980.
[13] K. R. Mehnert, and W. Busch, The Ba content of K-feldspar megacrysts in granites. Neus Jahrbuch Mineralogie Abhandlung, v. 140, pp. 221-252, 1981.
[14] P. D. Maniar, and P. M. Piccoli, Tectonic discrimination of granitoids., Geol. Soc. Am. Bull., vol. 101, pp. 635- 643, 1989.
[15] B. W. Chappell and A. J. R. White, Two contrasting granite types. Pacific Geology, Vol. 8, pp. 173-174, 1974.
[16] O. F. Tuttle and W. L. Bowen, Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Amer. Mem. 74, 1958.
[17] W. C. Luth, R. H. Jahns and O. F. Tuttle, The granite system at pressures of 4 to 10 kilobars. Journal of Geophysical Research 69, pp. 759 -773, 1964.
[18] S. S. Sun, and W. F. McDonough, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A. D. and Norry, M. J. (eds.): Magmatism in the ocean basins. Geol. Soc. London. Spec. Publ. 42, pp. 313-345, 1989.
[19] R. L. Cullers and l. Graf, Rare Earth elements in igneous rocks of the continental crust: Intermediate and silicic rocks are petrogenesis. In: Henderson, P. (ed.) Rare Earth Elements Geochemistry. Elsevier Pub. Co., Amsterdam, Vol. 2, pp. 275-316, 1984.
[20] W. V. Boynton, Geochemistry of the rare earth elements: meteorite studies In: Henderson, P. (ed.) Rare earth element geochemistry [M]. Elsevier, Amsterdam. pp. 63-114, 1984.
[21] A. Masuda, O. Kawakami, Y. Dohmoto, and T. Takenaka, Lanthanide tetrad effects in nature: Two mutually opposite types, W and M. J. Geochem. J. 21, pp.119- 124, 1987.
[22] W. Irber, The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho and Zr/Hf of evolving peraluminous granite suites. Geochemica. et Cosmochimica Acta, 63 (3), pp. 489- 508, 1999.
[23] M. Bau, Controls on the fractionation of isovalent trace elements in magmatic and aqueous system; evidence from Y/Ho, Zr/Hf and lanthanide tetrad effect. Contrib. Mineral Petrol, 123, pp. 323-333, 1996.
[24] W. Irber, H. J. Forster, L. Hech, P. Moller and G. Mortteani, Experimental, geochemical, mineralogical and oxygen isotope constrain in the late magmatic history of the Fichtelgebirge granites (Germany).Geol Rdesch 86, pp.110-124, 1997.
[25] P. Cerny and D. M. Burt, Paragenesis, and geochemical evolution of micas in granitic pegmatites, in Bailey, S. W., ed., Micas: Mineralogical Society of America, Reviews in Mineralogy, v. 13, pp. 257- 297, 1984.
[26] A. Miyashiro, Classification, characteristics and origin of ophiolites. J. Geol., vol. 83, pp. 249-281, 1975.
[27] A. Gerdes, G. Worner and A. Henk, Post collisional granite generation and HT – LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. J. of the Geological Society of London. 157, pp. 577- 587, 2000.